

CERTIFICATE

of Product Conformity (QAL1)

Certificate No.: 0000059867_03

EN	This is to certify that the AMS has been tested and found to comply with the standards 15267-1 (2009), EN 15267-2 (2009), EN 15267-3 (2007)
Test Institute:	TÜV Rheinland Energy & Environment GmbH
Manufacturer:	AP2E 110 Avenue Galilée 13593 Aix-en-Provence France
Certified AMS:	ProCeas LaserCEM for CO, NO, NO ₂ , SO ₂ , HCI, HF, NH ₃ , CH ₄ , O ₂ and H ₂ O

Certification is awarded in respect of the conditions stated in this certificate (this certificate contains 16 pages).

The present certificate replaces certificate 0000059867_02 dated 5 September 2023.

Publication in the German Federal Gazette (BAnz) of 10 May 2024

German Environment Agency

Dessau, 12 June 2024

Dr. Marcel Langner Head of Section II 4

www.umwelt-tuv.eu tre@umwelt-tuv.eu Tel. + 49 221 806-5200 Suitability Tested EN 15267 QAL1 Certified Regular Surveillance

www.tuv.com ID 0000059867

This certificate will expire on: 9 May 2029

TÜV Rheinland Energy & Environment GmbH Cologne, 11 June 2024

PALUS

ppa. Dr. Peter Wilbring

TÜV Rheinland Energy & Environment GmbH Am Grauen Stein 51105 Köln

Test institute accredited to EN ISO/IEC 17025 by DAkkS (German Accreditation Body). This accreditation is limited to the accreditation scope defined in the enclosure to the certificate D-PL-11120-02-00.

info@gal.de

Test report: Initial certification: Expiry date: Publication: EuL/21250153/B dated 25 September 2023 22 July 2019 9 May 2029 BAnz AT 10.05.2024 B7, chapter I No. 5.1

Approved application

The tested AMS is suitable for use at plants according to Directive 2010/75/EC, chapter III (combustion plants / 13th BImSchV:2021), chapter IV (waste incineration plants / 17th BImSchV:2021), Directive 2015/2193/EC (44th BImSchV:2022), 30th BImSchV:2019 and TA Luft:2021. The measured ranges have been selected so as to ensure as broad a field of application as possible.

The suitability of the AMS for this application was evaluated based on laboratory testing and a six-month field test at a waste incinerator and a six-month field test at a power plant with co-incineration of waste.

The AMS is approved for an ambient temperature range of +5 °C to 40 °C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the emission limit values and oxygen concentration relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the installation at which it will be installed.

Note

The legal regulations mentioned correspond to the current state of legislation during certification. Each user should, if necessary, in consultation with the competent authority, ensure that this AMS meets the legal requirements for the intended use. In addition, it cannot be ruled out that legal regulations governing the use of a measuring device for emission monitoring may change during the lifetime of the certificate.

Basis of the certification

This certification is based on:

- Test report EuL/21250153/B dated 25 September 2023 of TÜV Rheinland Energy GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

Umwelt 🎧 Bundesamt

Certificate: 0000059867_03 / 12 June 2024

Publication in the German Federal Gazette: BAnz AT 10.05.2024 B7, chapter I No. 5.1, Announcement by UBA dated 19 March 2024:

AMS designation:

ProCeas LaserCEM for CO, NO, NH₃, O₂, H₂O, SO₂, HCI, HF, NO₂ and CH₄

Manufacturer: AP2E, Aix-en-Provence, France

Field of application:

Modular measuring system for plants requiring official approval

Measuring ranges during the performance test:

Component/ Modul	Certification range	additional ran	Unit	
CO	0 - 75	0 - 1.249		mg/m³
CO (L)	0 - 30	0 - 250	-	mg/m³
NO	0 - 78	0 - 150	0 - 2.008	mg/m³
NH ₃	0 - 15	0 - 45	0 - 76	mg/m³
H ₂ O	0 - 30	0 - 40		Vol%
O ₂	0 - 21	-		Vol%
SO ₂	0 - 75	0 - 2.858		mg/m³
HCI	0 - 15	0 - 98	-	mg/m³
HF	0 - 1,5	0 - 10		mg/m³
NO ₂	0 - 40	0 - 100	- / 3 -	mg/m³
CH ₄	0 - 5	0 - 20	-	mg/m³

Software version:

1.0.21 (SpectrumAnalyzer) oder 3.0.8.85 (DataAnalyser)

Restrictions:

When using the NO component, the HCl concentration in the waste gas must not exceed 50 mg/m³.

Notes:

- 1. Wet test gases should be used when testing NH_3 , HCI, HF and H_2O .
- 2. The maintenance interval is three months.
- 3. The maintenance work must be spread over several days in order to comply with the criteria for downtimes at plants in accordance with the 13th BImSchV and 17th BImSchV.
- 4. Each measuring component represents a module. Each module bears the name of the component it measures. All modules can be combined as required.
- 5. Supplementary test (maintenance interval extension, qualification of a new software generation and a QAL3 tool, modification of the rear panel of the cabinet) with regard to the announcements of the Federal Environment Agency

of 24 February 2020 (BAnz AT 24.03.2020 B7, Chapter I Number 3.1) and of 5 July 2023 (BAnz AT 02.08.2023 B7, Chapter I Number 3.4).

Test institute:

TÜV Rheinland Energy GmbH, Cologne Report No.: EuL/21250153/B dated 25 September 2023

qal1.de

info@qal.de

Certified product

This certificate applies to automated measurement systems conforming to the following description:

The LaserCEM measuring device is a modular multi-component measuring device that operates at low pressure. The measuring principle is based on infrared laser spectroscopy. This combines a resonator enhanced absorption spectroscopy with optical feedback (OFCEAS; Optical Feedback Cavity Enhanced Absorption Spectroscopy) and a low pressure sampling technique (LPS).

The sample gas preparation consists of a heated CEM probe. Sampling here is via a critical nozzle and a 2-µm filter made of sintered stainless steel. A heated sample gas line equipped with a PTFE core is connected to the probe.

The measuring system tested here consists of:

- Gas sampling probe CEM with critical nozzle and 2 µm filter.
- Heated sample gas line, temperature 80 °C (self-regulating), inner diameter approx. 6 mm, material PFA, length max. 35 m.
- Analytical cabinet with:
 - Analyzer modules LaserCEM,
 - o Sample gas hoses,
 - Pump (vacuum),
 - o interface module,
 - Measurement outputs and various electrical components.

With the exception of the heatable gas sampling probe and the heatable sample gas line, all components are located together with the electrical distribution and modules in a lockable measuring cabinet.

The measuring device is available in 2 different versions, which mainly differ in the size of the measuring cabinet. Due to the different heights of the cabinets, adjustments had to be made to the sample gas paths and other arrangements of components such as changeover valves for feeding dry test gases. In addition, the interface module for connecting dry test gases and the switchover options at the front have been expanded for the 38U design.

General notes

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacture of the certified product. Both the product and the quality management systems shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy & Environment GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate. This certification mark may be applied to the product or used in advertising materials for the certified product.

This document as well as the certification mark remains property of TÜV Rheinland Energy & Environment GmbH. With revocation of the publication the certificate loses its validity. After the expiration of the certificate and on requests of the TÜV Rheinland Energy & Environment GmbH this document shall be returned and the certificate mark must not be employed anymore.

The relevant version of this certificate and its expiration is also accessible on the internet: **gal1.de**.

History of documents

Certification of ProCeas LaserCEM is based on the documents listed below and the regular, continuous monitoring of the Quality Management System of the manufacturer:

Initial certification according to EN 15267

Certificate No. 0000059867_00: 5 November 2019 Expiry date of the certificate: 21 July 2024 Test report: 936/21228566/C dated 7 March 2019 TÜV Rheinland Energy GmbH Publication: BAnz AT 22.07.2019 B8, chapter I number 1.1 UBA announcement dated 28 June 2019

Supplementary testing according to EN 15267

Certificate No. 0000059867_01: 4 June 2020 Expiry date of the certificate: 23 March 2025 Test report: 936/21228566/D dated 20 May 2019 TÜV Rheinland Energy GmbH Publication: BAnz AT 24.03.2020 B7, chapter I number 3.1 UBA announcement dated 24 February 2020

Notifications

Statement issued by TÜV Rheinland Energy GmbH dated 12 November 2020 Publication: BAnz AT 03.05.2021 B9, chapter III notification 5 UBA announcement dated 31 March 2021 (Software changes)

Supplementary testing according to EN 15267

Certificate No. 0000059867_02: 5 September 2023 Expiry date of the certificate: 1 August 2028 Test report: 936/21250153/A dated 6 February 2023 TÜV Rheinland Energy GmbH Publication: BAnz AT 02.08.2023 B7, chapter I number 3.4 UBA announcement dated 5 July 2023

Supplementary testing according to EN 15267

Certificate No. 0000059867_03: 12 June 2024 Expiry date of the certificate: 9 May 2029 Test report: EuL/21250153/B dated 25 September 2023 TÜV Rheinland Energy GmbH Publication: BAnz AT 10.05.2024 B7, chapter I number 5.1 UBA announcement dated 19 March 2024

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	AP2E					
AMS designation	ProCeas LaserCEM					
Serial number of units under test	20200693/20200696					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectros					
Test report	EuL/2	21250153	6/B			
Test laboratory	TÜV	Rheinland	ł			
Measured component	CO					
Certification range	0 -	30	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.00	mg/m ³			
Sum of negative CS at zero point		0.00	mg/m³			
Sum of postive CS at span point		0.00	mg/m³			
Sum of negative CS at span point		-0.48	mg/m³			
Maximum sum of cross-sensitivities		-0.48	mg/m ³			
Uncertainty of cross-sensitivity	ui	-0.277	mg/m ³			
Calculation of the combined standard uncertainty						
Tosted parameter				1,12		
resteu parameter		0.217	ma/m3	u 0.100	(mg/m3)2	
Look of fit	u _D	0.001	mg/m ³	0.100	$(mg/m^3)^2$	
Lack of III	Ulof	0.081	mg/m ^e	0.007	(mg/m ²) ²	
Zero drift from field test	U _{d.z}	-0.398	mg/m ^o	0.158	$(mg/m^2)^2$	
Span drift from heid test	U _{d.s}	0.304	mg/m ^e	0.132	(mg/m ²) ²	
Influence of ambient temperature at span	ut	0.021	mg/m ^o	0.000	$(mg/m^2)^2$	
Influence of supply voltage	u _v	0.049	mg/m ³	0.002	$(mg/m^3)^2$	
Cross-sensitivity (interference)	Ui	-0.277	mg/m ^s	0.077	$(mg/m^3)^2$	
Influence of sample gas flow	Un	-0.092	mg/m ³	0.008	(mg/m ³) ²	
Uncertainty of reference material at 70% of certification range	U _{rm}	0.242	mg/m ³	0.059	$(mg/m^3)^2$	
* The larger value is used :						
"Repeatability standard deviation at set point" or						
"Standard deviation from paired measurements under field conditions"						
andard uncertainty (u _c) $u_c = \sqrt{\sum (u_c)}$	J _{max, j})	2		0.74	mg/m ³	
Total expanded uncertainty	U = u	u _c * k = u	_c * 1.96	1.45	mg/m ³	
Polativo total ovnandod uncortainty	LLin	% of the	EI V 20 ma/m ³		7 22	
					1.25	

Requirement of 2010/75/EU Requirement of EN 15267-3
 U in % of the ELV 20 mg/m³
 7.23

 U in % of the ELV 20 mg/m³
 10.00

 U in % of the ELV 20 mg/m³
 7.50

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system							
Manufacturer	AP2E						
AMS designation	ProCeas LaserCEM						
Serial number of units under test	20200693/20200696						
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectrosc						
Test report	EuL/21250153/B						
Test laboratory	TÜV Rheinland						
Measured component	CH4						
Certification range	0 -	5	mg/m³				
Evaluation of the cross-sensitivity (CS)							
(system with largest CS)							
Sum of positive CS at zero point		0.13	mg/m ³				
Sum of negative CS at zero point		0.00	mg/m ³				
Sum of postive CS at span point		0.10	mg/m ³				
Sum of negative CS at span point		-0.03	mg/m ³				
Maximum sum of cross-sensitivities		0.13	mg/m ³				
Uncertainty of cross-sensitivity	u	0.075	mg/m ³				
Calculation of the combined standard uncertainty							
Tested parameter				U ²			
	un	0.058	mg/m³	0.003	(mg/m ³) ²		
Lack of fit	Ulof	0.009	mg/m ³	0.000	$(mg/m^3)^2$		
Zero drift from field test	Ud 7	-0.006	mg/m ³	0.000	$(mg/m^3)^2$		
Span drift from field test	Uda	0.081	mg/m ³	0.007	$(mg/m^3)^2$		
Influence of ambient temperature at span	u.s	0.021	mg/m ³	0.000	$(mq/m^3)^2$		
Influence of supply voltage	ы.	0.002	ma/m ³	0.000	$(mg/m^3)^2$		
Cross-sensitivity (interference)	L:	0.075	ma/m ³	0.006	$(ma/m^3)^2$		
Influence of sample gas flow		0.012	ma/m ³	0.000	$(mg/m^3)^2$		
Uncertainty of reference material at 70% of certification range		0.040	mg/m ³	0.002	$(mg/m^3)^2$		
* The larger value is used :	urm	0.0.0		0.001	(
"Repeatability standard deviation at set point" or							
"Standard deviation from paired measurements under field conditions"							
)2				
Combined standard uncertainty (u _c)	$u_c = $	√∑(u _m	_{lax, j}) ^c	0.13	mg/m ³		
Total expanded uncertainty	U = u	ι _c * k = ι	ı _c * 1.96	0.26	mg/m³		
Relative total expanded uncertainty	U in ^o	% of the	range 5 mg/m ³		5.2		
Requirement of 2010/75/EU	U in ^o	% of the	range 5 mg/m ³		30.0 **		
Requirement of EN 15267-3	U in 9	% of the i	range 5 mg/m³		22.5		

** The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 30.0 % was used instead.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	AP2E					
AMS designation	ProCeas LaserCEM					
Serial number of units under test	20200693/20200696					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectros					
Test report	EuL/21250153/B					
Test laboratory	TÜV Rheinland					
Measured component	HF					
Certification range	0 -	1.5	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.02	mg/m³			
Sum of negative CS at zero point		0.00	mg/m³			
Sum of postive CS at span point		0.06	mg/m ³			
Sum of negative CS at span point		-0.03	mg/m³			
Maximum sum of cross-sensitivities		0.06	mg/m ³			
Uncertainty of cross-sensitivity	ui	0.032	mg/m³			
Calculation of the combined standard uncertainty						
Tested parameter				u²		
	u _D	0.004	mg/m³	0.000	(mg/m³)²	
Lack of fit	Ulof	0.009	mg/m³	0.000	(mg/m ³) ²	
Zero drift from field test	U _{d.z}	-0.008	mg/m ³	0.000	$(mg/m^3)^2$	
Span drift from field test	U _{d s}	-0.023	mg/m ³	0.001	$(mg/m^3)^2$	
Influence of ambient temperature at span	U _t	0.015	mg/m ³	0.000	$(mq/m^3)^2$	
Influence of supply voltage	u,	0.006	mg/m ³	0.000	$(ma/m^3)^2$	
Cross-sensitivity (interference)	u,	0.032	mg/m ³	0.001	$(mg/m^3)^2$	
Influence of sample gas flow	U _n	0.007	mg/m ³	0.000	$(mg/m^3)^2$	
Uncertainty of reference material at 70% of certification range	Um	0.012	mg/m ³	0.000	$(mg/m^3)^2$	
* The larger value is used :	~1111	0.0.1		0.000	(
"Repeatability standard deviation at set point" or						
"Standard deviation from paired measurements under field conditions"						
Combined standard uncertainty (u _o)	u. =.	$\sqrt{\sum (u_m)}$	$(2)^2$	0.05	ma/m ³	
Total expanded uncertainty	U = u	_c * k = u _c	* 1.96	0.09	mg/m ³	
Relative total expanded uncertainty	Uin	% of the	ELV 1 mg/m ³		9.1	
Requirement of 2010/75/EU	U in S	% of the	ELV 1 mg/m ³		40.0	
Requirement of EN 15267-3	U in %	% of the E	ELV 1 mg/m ³		30.0	

info@qal.de

Measuring system							
Manufacturer	AP2E						
AMS designation	ProCeas LaserCEM						
Serial number of units under test	20200693/20200696						
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectrosc						
Test report	EuL/21250153/B						
Test laboratory	TÜV Rheinland						
Measured component	NO2						
Certification range	0 -	40	mg/m ³				
Evaluation of the cross-sensitivity (CS)							
(system with largest CS)							
Sum of positive CS at zero point		0.25	mg/m³				
Sum of negative CS at zero point		0.00	mg/m³				
Sum of postive CS at span point		0.17	mg/m³				
Sum of negative CS at span point		-1.25	mg/m³				
Maximum sum of cross-sensitivities		-1.25	mg/m³				
Uncertainty of cross-sensitivity	ui	-0.723	mg/m³				
Calculation of the combined standard uncertainty							
Tested parameter				U ²			
	u _D	0.170	mg/m³	0.029	(mg/m ³) ²		
Lack of fit	Ulof	-0.155	mg/m³	0.024	(mg/m ³) ²		
Zero drift from field test	U _{d z}	-0.162	mg/m ³	0.026	(mg/m ³) ²		
Span drift from field test	U _{d s}	-0.370	mg/m³	0.137	(mg/m ³) ²		
Influence of ambient temperature at span	U _t	0.235	mg/m ³	0.055	(mg/m ³) ²		
Influence of supply voltage	u _v	0.061	mg/m ³	0.004	$(mg/m^3)^2$		
Cross-sensitivity (interference)	u	-0.723	mg/m ³	0.523	$(mg/m^3)^2$		
Influence of sample gas flow	u _n	0.081	mg/m ³	0.007	$(mg/m^3)^2$		
Uncertainty of reference material at 70% of certification range	U _{rm}	0.323	mg/m ³	0.105	(mg/m ³) ²		
"Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"							
Combined standard upcortainty (u)	и =	$\sqrt{\Sigma}$)2	0.05	ma/m ³		
			ax,j/	1.95	mg/m ³		
	0-1	л _с к– и	_c 1.90	1.07	mg/m		
Relative total expanded uncertainty	U in	% of the	ELV 20 m	q/m³	9.3		
Requirement of 2010/75/EU	U in	% of the	ELV 20 m	g/m³	20.0		
Requirement of EN 15267-3	U in ^o	% of the I	ELV 20 mg	/m³	15.0		

Umwelt 🎲 Bundesamt

Certificate: 0000059867_03 / 12 June 2024

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	AP2E					
AMS designation	Lase					
Serial number of units under test	SN2015-0120 / SN2015-0125					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectrosc					
			· ·			
Test report	936/2	1228566	/D			
Test laboratory	ΤÜV	Rheinland	d			
Date of report	2019-05-20					
Measured component	H_2O					
Certification range	0 -	30	Vol%			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.00	Vol%			
Sum of negative CS at zero point		0.00	Vol%			
Sum of postive CS at span point		0.63	Vol%			
Sum of negative CS at span point		0.00	Vol%			
Maximum sum of cross-sensitivities		0.63	Vol%			
Uncertainty of cross-sensitivity	u:	0.364	Vol%			
	-1					
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	u _D	0.237	Vol%	0.056	(Vol%)²	
Lack of fit	u _{lof}	0.161	Vol%	0.026	(Vol%) ²	
Zero drift from field test	U _{d z}	0.121	Vol%	0.015	(Vol%) ²	
Span drift from field test	Ude	-0.433	Vol%	0.187	(Vol%) ²	
Influence of ambient temperature at span	u	0.351	Vol%	0.123	(Vol%) ²	
Influence of supply voltage	u.	0.198	Vol%	0.039	(Vol%) ²	
Cross-sensitivity (interference)	v	0.364	Vol%	0.132	(Vol%) ²	
Influence of sample gas flow	 U.,	0.025	Vol%	0.001	(Vol%) ²	
Uncertainty of reference material at 70% of certification range	Urm	0.242	Vol%	0.059	(Vol%) ²	
* The larger value is used :	-m				()	
"Repeatability standard deviation at set point" or						
"Standard deviation from paired measurements under field conditions"						
)2			
Combined standard uncertainty (u _c)	$u_c =$	√∑(u _m	ax, j) ²	0.80	Vol%	
Total expanded uncertainty	U = u	u _c * k = u	l _c * 1.96	1.57	Vol%	
Relative total expanded uncertainty	Uin	% of the	range 30	Vol%	5.2	
Requirement of 2010/75/EU	Uin	% of the	range 30	Vol%	10.0 **	
Requirement of EN 15267-3	Uin	% of the I	ange 30 V	/ol%	7.5	

** The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Measuring system						
Manufacturer	AP2E					
AMS designation						
Serial number of units under test	SN2015-0120 / SN2015-0125					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectroso					
Test report	936/2	1228566	5/D			
Test laboratory	TÜV F	Rheinland	b			
Date of report	2019-05-20					
Measured component	HCI					
Certification range	0 -	15	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.07	mg/m ³			
Sum of negative CS at zero point		0.00	mg/m ³			
Sum of postive CS at span point		0.18	mg/m ³			
Sum of negative CS at span point		0.00	mg/m ³			
Maximum sum of cross-sensitivities		0.18	mg/m ³			
Uncertainty of cross-sensitivity	Ui	0.103	mg/m ³			
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	u _D	0.058	mg/m³	0.003	(mg/m ³) ²	
Lack of fit	Ulof	0.108	mg/m ³	0.012	(mg/m ³) ²	
Zero drift from field test	U _{d.z}	0.139	mg/m³	0.019	(mg/m ³) ²	
Span drift from field test	Ud.s	0.208	mg/m³	0.043	(mg/m ³) ²	
Influence of ambient temperature at span	Ut	0.100	mg/m ³	0.010	(mg/m ³) ²	
Influence of supply voltage	u _v	0.030	mg/m ³	0.001	(mg/m ³) ²	
Cross-sensitivity (interference)	u	0.103	mg/m ³	0.011	(mg/m ³) ²	
Influence of sample gas flow	u _p	0.025	mg/m ³	0.001	(mg/m ³) ²	
Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"	U _{rm}	0.121	mg/m³	0.015	(mg/m ³) ²	
Standard deviation nom paired measurements under neld conditions)2			
Combined standard uncertainty (up)	$u_c = 1$	√∑ (u _m	ax, j Ĵ	0.34	ma/m ³	
Total expanded uncertainty	U = u	,*k = ι	ı _c * 1.96	0.66	mg/m ³	
Relative total expanded uncertainty	U in %	% of the	ELV 10 mg/m ³		6.6	
Requirement of 2010/75/EU	U in %	6 of the	ELV 10 mg/m ³		40.0	
Requirement of EN 15267-3	U in %	6 of the	ELV 10 mg/m ³		30.0	

Measuring system						
Manufacturer	AP2E					
AMS designation	LaserCEM					
Serial number of units under test	SN2015-0120 / SN2015-0125					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectros					
Test report	936/21228566/D					
Test laboratory	ΤÜV	Rheinland	ł			
Date of report	2019-05-20					
Measured component	NH_3					
Certification range	0 -	15	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.00	mg/m ³			
Sum of negative CS at zero point		0.00	mg/m ³			
Sum of postive CS at span point		0.22	mg/m ³			
Sum of negative CS at span point		-0.19	mg/m ³			
Maximum sum of cross-sensitivities		0.22	mg/m ³			
Uncertainty of cross-sensitivity	ui	0.126	mg/m ³			
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Repeatability standard deviation at set point *	u,	0.100	mg/m ³	0.010	(mg/m ³) ²	
Lack of fit	Ulof	0.093	mg/m ³	0.009	(mg/m ³) ²	
Zero drift from field test	U _{d z}	-0.156	mg/m ³	0.024	(mg/m ³) ²	
Span drift from field test	Uds	0.217	mg/m ³	0.047	$(mg/m^3)^2$	
Influence of ambient temperature at span	U _t	0.153	mg/m ³	0.023	$(mg/m^3)^2$	
Influence of supply voltage	u,	0.026	mg/m ³	0.001	$(mg/m^3)^2$	
Cross-sensitivity (interference)	Ui V	0.126	mg/m ³	0.016	$(mg/m^3)^2$	
Influence of sample gas flow	U _n	-0.002	mg/m ³	0.000	$(mq/m^3)^2$	
Uncertainty of reference material at 70% of certification range	Urm	0.121	mg/m ³	0.015	$(mq/m^3)^2$	
* The larger value is used :			5		(5, 7	
"Repeatability standard deviation at set point" or						
"Standard deviation from paired measurements under field conditions"			1			
	u_ =	$\sqrt{\sum (u_m)}$	²			
Combined standard uncertainty (u _c)	U	V (III	ax, j /	0.38	mg/m³	
Total expanded uncertainty	U = ι	u _c * k = ι	ı _c * 1.96	0.75	mg/m³	
Relative total expanded uncertainty	U in	% of the	ELV 10 mg/m ³		7.5	
Requirement of 2010/75/EU	U in	% of the	ELV 10 mg/m ³		40.0	
Requirement of EN 15267-3	Uin	% of the l	ELV 10 mg/m ³		30.0	

Manufacturer	AP2F	-				
AMS designation	LaserCEM					
Serial number of units under test	SN2015-0120 / SN2015-0125					
Measuring principle	Ont Feedback Cavity Enh. Absorption Spectrosco					
	00.	, coasaoi		oorpaon	opoorooopy	
Test report	936/21228566/D					
Test laboratory	ΤÜV	Rheinland	ł			
Date of report	2019-05-20					
Measured component	NO					
Certification range	0 -	78	mg/m³			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.42	mg/m ³			
Sum of negative CS at zero point		0.00	mg/m ³			
Sum of postive CS at span point		0.00	mg/m ³			
Sum of negative CS at span point		-1.30	mg/m ³			
Maximum sum of cross-sensitivities		-1.30	mg/m ³			
Uncertainty of cross-sensitivity	Ui	-0.752	mg/m ³			
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	uD	0.721	mg/m³	0.520	(mg/m ³) ²	
Lack of fit	Ulof	-0.437	mg/m ³	0.191	(mg/m ³) ²	
Zana shift furnes firshed to st	п.	0.315	mg/m³	0.099	(mg/m ³) ²	
Zero drift from field test	u _{d.z}				((0)0	
Span drift from field test	u _{d.z} U _{d.s}	1.081	mg/m³	1.169	(mg/m³)²	
Span drift from field test Influence of ambient temperature at span	U _{d.z} U _{d.s} U _t	1.081 0.751	mg/m ³ mg/m ³	1.169 0.564	(mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage	U _{d.s} U _t U _v	1.081 0.751 0.347	mg/m³ mg/m³ mg/m³	1.169 0.564 0.120	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference)	U _{d.s} U _t U _v U _i	1.081 0.751 0.347 -0.752	mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow	U _{d.z} U _{d.s} U _t U _v U _i	1.081 0.751 0.347 -0.752 0.444	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range	U _{d.z} U _{d.s} U _t U _v U _i U _p U _{rm}	1.081 0.751 0.347 -0.752 0.444 0.630	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used :	U _{d.7} U _{d.s} U _t U _v U _i U _p U _{rm}	1.081 0.751 0.347 -0.752 0.444 0.630	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or	U _{d.s} U _t U _v U _i U _n U _{rm}	1.081 0.751 0.347 -0.752 0.444 0.630	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions"	u _{d.z} U _{d.s} U _t U _v U _i U _o U _{rm}	1.081 0.751 0.347 -0.752 0.444 0.630	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" Combined standard uncertainty (u _c)	$u_{d,z}$ $u_{d,s}$ u_{t} u_{v} u_{i} u_{c} u_{rm}	1.081 0.751 0.347 -0.752 0.444 0.630	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
2ero drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" Combined standard uncertainty (u _c) Total expanded uncertainty	$u_{d,z}$ $u_{d,s}$ u_{t} u_{v} u_{i} u_{c} u_{rm} $U_{c} = U = u$	1.081 0.751 0.347 -0.752 0.444 0.630 $\sqrt{\sum (u_m)^{*} k = 0}$	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.169 0.564 0.120 0.566 0.197 0.397 1.96 3.83	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² mg/m ³	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" Combined standard uncertainty (u _c) Total expanded uncertainty	$u_{d,z}$ $u_{d,s}$ u_{t} u_{v} u_{i} u_{rm} $u_{c} =$ $U = u$	1.081 0.751 0.347 -0.752 0.444 0.630 $\sqrt{\sum_{u_c} (u_m)}$	mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3}	1.169 0.564 0.120 0.566 0.197 0.397 1.96 3.83	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ²	
Span drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" Combined standard uncertainty (u _c) Total expanded uncertainty	$u_{d,z}$ $u_{d,s}$ u_{t} u_{v} u_{o} u_{rm} $U_{c} =$ $U = u$ $U in$	1.081 0.751 0.347 -0.752 0.444 0.630 $\sqrt{\sum (u_m)}$ $u_c * k = u$ % of the	mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3} mg/m^{3}	1.169 0.564 0.120 0.566 0.197 0.397 1.96 3.83	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² mg/m ³ mg/m ³	
2ero drift from field test Span drift from field test Influence of ambient temperature at span Influence of supply voltage Cross-sensitivity (interference) Influence of sample gas flow Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" Combined standard uncertainty (u _c) Total expanded uncertainty Relative total expanded uncertainty Requirement of 2010/75/EU	$u_{d,z}$ $u_{d,s}$ u_{t} u_{v} u_{o} u_{rm} $U_{c} =$ $U = u$ $U \text{ in }$ $U \text{ in }$	1.081 0.751 0.347 -0.752 0.444 0.630 $\sqrt{\sum (u_m)}$ $u_c * k = u$ % of the % of the	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ $\frac{1}{2}$ $\frac{1}{2$	1.169 0.564 0.120 0.566 0.197 0.397 1.96 3.83	(mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² (mg/m ³) ² mg/m ³ 7.7 20.0	

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system						
Manufacturer	AP2E					
AMS designation	LaserCEM					
Serial number of units under test	SN2015-0120 / SN2015-0125					
Measuring principle	Opt. Feedback Cavity Enh. Absorption Spectroscop					
Test report	936/21228566/D					
Test laboratory	ΤÜV	Rheinland	b			
Date of report	2019-05-20					
Measured component	O ₂					
Certification range	0 -	21	Vol%			
Evaluation of the cross-sensitivity (CS)						
(system with largest CS)						
Sum of positive CS at zero point		0.00	Vol%			
Sum of negative CS at zero point		0.00	Vol%			
Sum of postive CS at span point		0.00	Vol%			
Sum of negative CS at span point		-0.34	Vol%			
Maximum sum of cross-sensitivities		-0.34	Vol%			
Uncertainty of cross-sensitivity	ui	-0.197	Vol%			
Calculation of the combined standard uncertainty						
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	u _D	0.091	Vol%	0.008	(Vol%) ²	
Lack of fit	Ulof	0.058	Vol%	0.003	(Vol%) ²	
Zero drift from field test	U _{d.z}	0.029	Vol%	0.001	(Vol%) ²	
Span drift from field test	U _{d.s}	0.069	Vol%	0.005	(Vol%) ²	
Influence of ambient temperature at span	Ut	0.107	Vol%	0.011	(Vol%) ²	
Influence of supply voltage	uv	0.012	Vol%	0.000	(Vol%) ²	
Cross-sensitivity (interference)	u	-0.197	Vol%	0.039	(Vol%) ²	
Influence of sample gas flow	u _p	0.023	Vol%	0.001	(Vol%)²	
Uncertainty of reference material at 70% of certification range * The larger value is used : "Repeatability standard deviation at set point" or	U _{rm}	0.170	Vol%	0.029	(Vol%)²	
"Standard deviation from paired measurements under field conditions"						
	$u_c =$	$\sqrt{\sum}(u_m$	ax, j) ²			
Combined standard uncertainty (u _c)				0.31	Vol%	
Total expanded uncertainty	U = 1	u _c * k = u	ı _c * 1.96	0.61	Vol%	
Pelative total expanded uncertainty	llin	% of the	range 21 Vol	-0/-	2.9	
Requirement of 2010/75/FU	Uin	% of the	range 21 Vol.	-%	10 0 **	
Requirement of EN 15267-3	Ll in (% of the	range 21 Vol -0	2/0	7.5	
	0 11				1.5	

** The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0 % was used instead.

Measuring system Manufacturer AMS designation Serial number of units under test Measuring principle Test report Test laboratory Date of report	AP2E Laser(SN201 Opt. F 936/21 TÜV R 2019-0	AP2E LaserCEM SN2015-0120 / SN2015-0125 Opt. Feedback Cavity Enh. Absorption Spectroso 936/21228566/D TÜV Rheinland 2019-03-07				
Measured component Certification range	SO ₂ 0 -	75	mg/m³			
Evaluation of the cross-sensitivity (CS) (system with largest CS)		4				
Sum of positive CS at zero point		0.00	mg/m ³			
Sum of negative CS at zero point		0.00	mg/m ³			
Sum of postive CS at span point		1.66	mg/m ³			
Sum of negative CS at span point		-0.74	mg/m ³			
Maximum sum of cross-sensitivities		1.66	mg/m ³			
Colculation of the combined standard uncertainty	ui	0.957	mg/m ³			
Tested parameter				U ²		
Standard deviation from paired measurements under field conditions *	lla	0.113	ma/m ³	0.013	$(mq/m^3)^2$	
Lack of fit	Ulof	0.866	mg/m ³	0.750	$(mq/m^3)^2$	
Zero drift from field test	U _d =	0.130	mg/m ³	0.017	$(mq/m^3)^2$	
Span drift from field test	Ud a	0.866	mg/m ³	0.750	$(mg/m^3)^2$	
Influence of ambient temperature at span	u.s U+	0.850	mg/m ³	0.723	$(mg/m^3)^2$	
Influence of supply voltage	u _v	0.121	mg/m ³	0.015	(mg/m ³) ²	
Cross-sensitivity (interference)	u	0.957	mg/m ³	0.916	(mg/m ³) ²	
Influence of sample gas flow	Up	0.189	mg/m ³	0.036	(mg/m ³) ²	
Uncertainty of reference material at 70% of certification range	u _{rm}	0.606	mg/m ³	0.368	(mg/m ³) ²	
 * The larger value is used : "Repeatability standard deviation at set point" or "Standard deviation from paired measurements under field conditions" 	1					
Combined standard uncertainty (up)	$u_{n} = 1$	Σ(u_	av 1) ²	1 80	ma/m ³	
Total expanded uncertainty	U = u _c	* k = L	u _c * 1.96	3.71	mg/m ³	
Pelative total expanded uncertainty	ll in %	of the	ELV 50 mg/m ³		7.4	
Requirement of 2010/75/FII		of the	ELV 50 mg/m ³		20.0	
Requirement of EN 15267-3	Llin %	of the	ELV 50 mg/m ³		15.0	
	01170				15.0	