

CERTIFICATE

of Product Conformity (QAL1)

Certificate No.: 0000040204 04

Certified AMS: Serinus 40 for NO, NO₂ and NO_x

Manufacturer: ACOEM Australasia (Ecotech Pty Ltd)

1492 Ferntree Gully Road, Knoxfield, VIC, 3180

Australia

Test Institute: TÜV Rheinland Energy & Environment GmbH

This is to certify that the AMS has been tested and found to comply with the standards VDI 4202-1 (2010), VDI 4203-3 (2010), EN 14211 (2012) as well as EN 15267-1 (2009) and EN 15267-2 (2023).

Certification is awarded in respect of the conditions stated in this certificate (this certificate contains 17 pages).

The present certificate replaces certificate 0000040204 02 dated 1 July 2020.

Suitability Tested Complying with 2008/50/EC EN 15267 Regular Surveillance

www.tuv.com ID 0000040204

Publication in the German Federal Gazette (BAnz) of 1 April 2014

German Environment Agency

Dessau, 27 June 2025

This certificate will expire on: 30 June 2030

TÜV Rheinland Energy & Environment GmbH Cologne, 26 June 2025

Dr. Marcel Langner Head of Section II 4 ppa. Dr. Peter Wilbring

PXWD

www.umwelt-tuv.eu qal1-info@tuv.com Tel. + 49 221 806-5200 TÜV Rheinland Energy & Environment GmbH Am Grauen Stein 51105 Köln

Test institute accredited to EN ISO/IEC 17025 by DAkkS (German Accreditation Body).

This accreditation is limited to the accreditation scope defined in the enclosure to the certificate D-PL-11120-02-00.

Certificate:

0000040204 04 / 27 June 2025

Test report:

936/21221977/A dated 8 October 2013

Initial certification:

1 April 2014

Expiry date:

30 June 2030

Certificate:

Renewal (of previous certificate 0000040204_02 of

1 July 2020 valid until 30 June 2025)

Publication:

BAnz AT 01.04.2014 B12, chapter IV No. 4.1

Approved application

The tested AMS is suitable for continuous immission measurement of NO, NO₂ and NO_x in stationary use.

The suitability of the AMS for this application was assessed on the basis of a laboratory test and a three month field test.

The AMS is approved for an ambient temperature range of 0 °C to 30 °C.

The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the measured values relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the intended use.

Basis of the certification

This certification is based on:

- Test report 936/21221977/A dated 8 October 2013 of TÜV Rheinland Energie und Umwelt GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

Certificate:

0000040204 04 / 27 June 2025

Publication in the German Federal Gazette: BAnz AT 01.04.2014 B12, chapter IV No. 4.1, Announcement by UBA dated 27 February 2014:

AMS designation:

Serinus 40 for NO, NO2 and NOx

Manufacturer:

Ecotech Pty Ltd., Knoxfield, Australia

Field of application:

For the continuous measurement of nitrogen oxide concentrations from stationary sources in ambient air

Measuring ranges during the performance test:

Component	Certification range	Unit
Nitrogen monoxide	0 - 1,200	µg/m³
Nitrogen dioxide	0 - 500	μg/m³

Software version:

Firmware: 2.09.0005

Restrictions:

None

Notes:

- The measuring system must be operated inside a lockable measuring cabinet or measurement container.
- The test report on performance testing is available on the internet at www.qal1.de.

Test institute:

TÜV Rheinland Energie und Umwelt GmbH, Cologne Report No.: 936/21221977/A dated 8 October 2013

Publication in the German Federal Gazette: BAnz AT 02.04.2015 B5, Chap. IV notification 6, Announcement by UBA dated 25 February 2015:

Notification as regards Federal Environment Agency (UBA) notice of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1)

Hereafter, the Serinus 40 measuring system for NO, NO_2 , and NO_x , manufactured by Ecotech Pty Ltd., will be equipped with a new microprocessor board (CO10014). This results in modifications of the power plug as well as software changes.

The current two software versions are designated as follows: 2.20.0009 for systems using the old microprocessor board (C010001) 3.10.001 for systems using the new microprocessor board (C010014).

Statement by TÜV Rheinland Energie und Umwelt GmbH of 12 September 2014

Publication in the German Federal Gazette: BAnz AT 15.03.2017 B6, Chap. V notification 7, Announcement by UBA dated 22 February 2017:

7 Notification as regards Federal Environment Agency notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 25 February 2015 (BAnz AT 02.04.2015 B5 chapter IV notification 6)

The current software version of the Serinus 40 for NO, NO_2 and NO_X manufactured by Ecotech Pty Ltd. for systems with micro processor board (C010001) is: V 2.31.0004.

The following software versions are approved for this instrument version: V 2.21.0000, V 2.22.0000, V 2.23.0000, V 2.24.0000, V 2.25.0004, V 2.26.0000, V 2.27.0000, V 2.28.0000, V 2.29.0003 und V 2.30.0000.

The current software version of the Serinus 40 for NO, NO_2 and NO_X manufactured by Ecotech Pty Ltd. for systems with micro processor board (C010014) is: V 3.48.011.

The following software versions are approved for this instrument version: V 3.13.000, V 3.14.001, V 3.15.010, V 3.16.001, V 3.18.003, V 3.20.000, V 3.22.000,

V 3.23.015, V 3.24.000, V 3.26.000, V 3.27.000, V 3.28.000, V 3.29.013, V 3.30.005.

V 3.31.002, V 3.32.003, V 3.33.004, V 3.34.000, V 3.35.004, V 3.36.000, V 3.37.004,

 $\\ V\ 3.38.006,\ V\ 3.39.000,\ V\ 3.40.001,\ V\ 3.41.004,\ V\ 3.42.000,\ V\ 3.43.000,\ V\ 3.44.004,$

V 3.45.011, V 3.46.002, V 3.47.006.

Statement by TÜV Rheinland Energy GmbH dated 13 October 2016.

Publication in the German Federal Gazette: BAnz AT 26.03.2019 B7, Chap. IV notification 17, Announcement by UBA dated 27 February 2019:

17 Notification as regards Federal Environment Agency notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 22 February 2017 (BAnz AT 15.03.2017 B6, chapter IV notification 7)

The current software version of the Serinus 40 for NO, NO_2 and NO_x manufactured by Ecotech Pty Ltd. for systems with micro processor board (C010001) is: V 2.35.0001.

In addition, the following software versions have been approved for this instrument version: V 2.32.0000, V 2.33.0000, V 2.34.0000

The current software version of the Serinus 40 for NO, NO_2 and NO_x manufactured by Ecotech Pty Ltd. for systems with micro processor board (C010014) is: V 3.74.0003.

In addition, the following software versions have been approved for this instrument version:

V 3.49.0000, V 3.51.0011, V 3.52.0000, V 3.53.0012, V 3.54.0000, V 3.55.0000,

V 3.56.0001, V 3.57.0002, V 3.58.0000, V 3.59.0004, V 3.60.0005, V 3.61.0000,

V 3.62.0000, V 3.63.0001, V 3.64.0000, V 3.65.0001, V 3.66.0000, V 3.67.0003,

V 3.68.0009, V 3.69.0001, V 3.70.0000, V 3.71.0000.

The display of the measuring system shows the software version in the following format: 2.XX or 3.XX.

Statement by TÜV Rheinland Energy GmbH dated 10 October 2018

Publication in the German Federal Gazette: BAnz AT 24.03.2020 B7, Chap. IV notification 21, Announcement by UBA dated 24 February 2020:

Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 27 February 2019 (BAnz AT 26.03.2019 B7, chapter IV notification 17)

The latest software version of the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ with microprocessor C010001 manufactured by Ecotech Pty Ltd. remains: V 2.35.0001.

The latest software version of the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ with microprocessor C010014 manufactured by Ecotech Pty Ltd. is: V 3.87.0000.

Moreover, the following software version are approved for this instrument version: V 3.75.0003, V 3.76.0004, V 3.77.0009, V 3.78.0000, V 3.79.0001, V 3.81.0000, V 3.83.0000, V 3.84.0000, V 3.85.0001, V 3.86.0000.

The instrument's display shows the software version in the following format: 2.XX or 3.XX.

Statement by TÜV Rheinland Energy GmbH dated 20 September 2019

Publication in the German Federal Gazette: BAnz AT 03.05.2021 B9, Chap. III notification 11, Announcement by UBA dated 31 March 2021:

11 Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 24 February 2020 (BAnz AT 24.03.2020 B7, chapter IV notification 21)

The latest software version of the Serinus 40 measuring system for NO, NO_2 and NO_x manufactured by the company Ecotech Pty Ltd. is unchanged for devices with the microprocessor board (C010001): V 2.35.0001.

The latest software version of the Serinus 40 measuring system for NO, NO₂ and NO_x manufactured by the company Ecotech Pty Ltd. for devices with the microprocessor board (C010014) is: V 4.02.0000.

Furthermore, the following software versions are approved for this instrument version: V 3.88.0000, V 3.89.0000, V 3.90.0002, V 4.00.0000, V 4.01.0000

The instrument's display shows the software version in the following format: 2.XX or 3.XX or 4.XX.

Statement by TÜV Rheinland Energy GmbH dated 14 July 2020

Publication in the German Federal Gazette: BAnz AT 11.04.2022 B10, Chap. VI notification 5, Announcement by UBA dated 9 March 2022:

Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 31 March 2021 (BAnz AT 03.05.2021 B9, chapter III notification 11)

The company name of Ecotech Pty. Ltd. changes to ACOEM Australasia.

The current software version of the measuring device Serinus 40 for NO, NO_2 and NO_x of the company ACOEM Australasia for devices with the microprocessor board (C010001) is unchanged: V 2.35.0001.

The current software version of the measuring device Serinus 40 for NO, NO₂ and NO_x of the company ACOEM Australasia for devices with the microprocessor board (C010014) is: V 4.13.0000.

Furthermore, the following software versions are approved for this instrument version: V 4.04.0000, V 4.06.0000, V 4.07.0000, V 4.08.0000, V 4.09.0000, V 4.10.0000, V 4.11.0000.

The software version number appears in the display of the measuring device in the format 2.XX or 3.XX or 4.XX.

Statement by TÜV Rheinland Energy GmbH dated 20 August 2021

Publication in the German Federal Gazette: BAnz AT 20.03.2023 B6, Chap. IV notification 59, Announcement by UBA dated 21 February 2023:

Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 9 March 2022 (BAnz AT 11.04.2022 B10, chapter VI notification 5)

The current software version of the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ from the company ACOEM Australasia for devices with the microprocessor board (C010001) remains: V 2.35.0001

The current software version of the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ from the company ACOEM Australasia for devices with the microprocessor board (C010014) is:

V 4.18.0000.

Furthermore, the following software versions are approved for this device version: V 4.14.0000, V 4.15.0000, V 4.16.0000, V 4.17.0000

The software version number appears in the display of the measuring system in the format 2.XX or 3.XX or 4.XX.

Alternatively, the measuring system can also be operated with a converter filling made of molybdenum (Art. No.: C050019).

Statement by TÜV Rheinland Energy GmbH dated 5 September 2022

Publication in the German Federal Gazette: BAnz AT 10.05.2024 B7, Chap. V notification 45, Announcement by UBA dated 19 March 2024:

45 Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 21 February 2023 (BAnz AT 20.03.2023 B6, chapter IV notification 59)

The current software version for the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ from ACOEM Australasia is unchanged for systems with the microprocessor board (C010001): V 2.35.0001

The current software version for the Serinus 40 measuring system for NO, NO $_2$ and NO $_x$ from ACOEM Australasia is for systems with the microprocessor board (C010014): V 4.22.0000.

The following software versions are also authorised for this device version: V 4.19.0000, V 4.20.0000, V 4.21.0000

The software version number appears on the display of the measuring device in the format 2.XX or 3.XX or 4.XX.

Statement issued by TÜV Rheinland Energy GmbH dated 15 December 2023

Publication in the German Federal Gazette: BAnz AT 19.05.2025 B3, Chap. IV notification 96, Announcement by UBA dated 2 April 2025:

96 Notification as regards Federal Environment Agency (UBA) notices of 27 February 2014 (BAnz AT 01.04.2014 B12, chapter IV number 4.1) and of 19 March 2024 (BAnz AT 10.05.2024 B7, chapter V notification 45)

The current software version of the Serinus 40 measuring system for NO, NO2 and NOx from ACOEM Australasia is unchanged for devices with the microprocessor board (C010001):

V 2.35.0001

The current software version of the Serinus 40 measuring system for NO, NO2 and NOx from ACOEM Australasia is for devices with the microprocessor board (C010014):

V 4.28.0000

The following software versions are also authorised for this device version: V 4.23.0000, V 4.24.0000, V 4.25.0000, V 4.26.0000, V 4.27.0000

The software version number appears on the display of the measuring device in the format 2.XX or 3.XX or 4.XX.

Statement issued by TÜV Rheinland Energy & Environment GmbH dated 28 September 2024

Certified product

This certificate applies to automated measurement systems conforming to the following description:

The Serinus 40 measuring system is a continuous nitrogen oxide monitor. The measuring principle relies on the chemiluminescence method. It was designed for the continuous measurement of NO, NO_2 and NO_x in ambient air.

Nitric oxides are measured on the basis of chemiluminescence detection of gas phases. Sample air enters the reaction cell via two separate (alternating) paths; the NO and NO_x channels.

In the first path, NO reacts with ozone as follows:

$$NO + O_3 \rightarrow NO_2^* + O_2$$

In the second path, the gas first passes through the delay coil and then through the NO_2/NO converter so that it reaches the reaction cell after the gas in the first path. At that time NO_2 (total concentration of NO and NO_2) is measured.

The NO₂ concentration is then calculated by subtracting the NO value from the measured NOx value.

This reaction releases energy in the form of chemiluminescent radiation at a wavelength of 1100 nm, which is filtered by the optical band-pass filter and detected by the photomultiplier tube (PMT).

The detected level of chemiluminescence is directly proportional to the NO concentration in the sample.

The nitrogen oxides analyser consists of five main modules:

- pneumatics for channelling sample and exhaust gas (incl. valve manifolds)
- sensors for measuring nitrogen oxides (reaction cell module) and other relevant parameters
- The control system which encompasses all circuit boards controlling sensors and pneumatic,
- power supply for all processes in the analyser
- · communication module for data access

Particle filter:

The particulate filter is a Teflon 5 micron (µm) filter with a diameter of 47 mm. This filter eliminates all particles larger than 5 µm that could interfere with sample measurements.

Permeation dryer for drying the sample gas

There are two serially-connected permeation dryers in the sample gas line downstream of the particle filter. During performance testing, these dryers were integrated into the analyser and are therefore considered part of the tested measuring system. The dryers remove moisture from the sample gas and thereby reduce the amount of interference caused by moisture.

Bluetooth

This facilitates remote access to the analyser from Android devices via the "Serinus Remote" app. Via Bluetooth, it is possible to control and parameterise the analyser, download data and create real time charts.

Sample gas pump

Manufacturer: Thomas, Type: 617CD22-194 C

During performance testing, the sample gas pump mentioned above was used for the laboratory as well as in the field test. As far as the models Serinus 10 (ozone), Serinus 30 (CO) and Serinus 50 (SO₂) are concerned, one pump can be operated with up to two analysers. However, operation of the Serinus 40 (NOX) requires one sample gas pump per analyser.

General notes

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacture of the certified product. Both the product and the quality management systems shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy & Environment GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate. This certification mark may be applied to the product or used in advertising materials for the certified product.

This document as well as the certification mark remains property of TÜV Rheinland Energy & Environment GmbH. With revocation of the publication the certificate loses its validity. After the expiration of the certificate and on requests of the TÜV Rheinland Energy & Environment GmbH this document shall be returned and the certificate mark must not be employed anymore.

The relevant version of this certificate and its expiration is also accessible on the internet: **qal1.de**.

History of documents

Certification of Serinus 40 is based on the documents listed below and the regular, continuous monitoring of the Quality Management System of the manufacturer:

Initial certification according to EN 15267

Certificate No. 0000040204_00: 29 April 2014 Expiry date of the certificate: 31 March 2019 Test report: 936/21221977/A dated 8 October 2013

TÜV Rheinland Energie und Umwelt GmbH

Publication: BAnz AT 01.04.2014 B12, chapter IV number 4.1

UBA announcement dated 27 February 2014

Notifications

Statement issued by TÜV Rheinland Energie und Umwelt GmbH dated 12 September 2014 Publication: BAnz AT 02.04.2015 B5, chapter IV notification 6 UBA announcement dated 25 February 2015 (Soft- and hardware changes)

Statement issued by TÜV Rheinland Energy GmbH dated 13 October 2016 Publication: BAnz AT 15.03.2017 B6, chapter V notification 7 UBA announcement dated 22 February 2017 (Software changes)

Renewal of certificates

Certificate No. 0000040204_01: 1 April 2019 Expiry date of the certificate: 30 June 2020

Notifications

Statement issued by TÜV Rheinland Energy GmbH dated 10 October 2018 Publication: BAnz AT 26.03.2019 B7, chapter IV notification 17 UBA announcement dated 27 February 2019 (Software changes)

Statement issued by TÜV Rheinland Energy GmbH dated 20 September 2019 Publication: BAnz AT 24.03.2020 B7, chapter IV notification 21 UBA announcement dated 24 February 2020 (Software changes)

Renewal of certificates

Certificate No. 0000040204_02: 27 June 2020 Expiry date of the certificate: 30 June 2025

Notifications

Statement issued by TÜV Rheinland Energy GmbH dated 14 July 2020 Publication: BAnz AT 03.05.2021 B9, chapter III notification 11 UBA announcement dated 31 March 2021 (Software changes)

Statement issued by TÜV Rheinland Energy GmbH dated 20 August 2021 Publication: BAnz AT 11.04.2022 B10, chapter VI notification 5 UBA announcement dated 9 March 2022 (Software changes and new producer name formerly Ecotech Pty. Ltd.)

Certificate:

0000040204_04 / 27 June 2025

Statement issued by TÜV Rheinland Energy GmbH dated 5 September 2022 Publication: BAnz AT 20.03.2023 B6, chapter IV notification 59 UBA announcement dated 21 February 2023 (Software changes)

Statement issued by TÜV Rheinland Energy & Environment GmbH dated 15 December 2023 Publication: BAnz AT 10.05.2024 B7, chapter V notification 45 UBA announcement dated 19 March 2024 (Software changes)

Renewal of certificates

Certificate No. 0000040204_03: 27 June 2025 Expiry date of the certificate: 30 June 2030

Renewal of certificates

Certificate No. 0000040204_04: 27 June 2025 Expiry date of the certificate: 30 June 2030 (Certificate correction, status of guidelines updated)

qal1.de qal1-info@tuv.com page 13 of 17

Expanded uncertainty laboratory, system 1

Measuring device:	Ecotech Serinus 40					Serial-No.:	13-0095 (Device 1)	
Measured component	NO ₂					1h-limit value:	104.6	lom/lomn
No.	Performance characteristic	Perfor	Performance criterion	Result	Partial	Partial uncertainty	Square of partial uncertainty	
1	Repeatability standard deviation at zero	VI	1.0 nmol/mol	0.310	Urz	90.0	0.0035	
2	Repeatability standard deviation at 1h-limit value	VI	3.0 nmol/mol	0.270	Ur,Ih	0.01	0.0001	
3	"lack of fit" at 1h-limit value	< 4.09	4.0% of measured value	0.720	U _(l)	0.43	0.1891	
4	Sensitivity coefficient of sample gas pressure at 1h-limit value	VI	8.0 nmol/mol/kPa	1.290	ďn	3.56	12.6928	
5	Sensitivity coefficient of sample gas temperature at 1h-limit value	VI	3.0 nmol/mol/K	0.040	Ugt	0.09	0.0086	
9	Sensitivity coefficient of surrounding temperature at 1h-limit value	VI	3.0 nmol/mol/K	0.620	Ust	1.55	2.3938	
7	Sensitivity coefficient of electrical voltage at 1h-limit value	VI	0.30 nmol/mol/V	0.045	۸n	0.13	0.0171	
0	Interferent D. O. with 24 mms mms	\ 1	10 nmol/mol (Zero)	0.090		000	0000	
00	HIGH GIRL 120 WILL ZI HILIDINI DI	> 1(10 nmol/mol (Span)	-0.300	OH2O	0.0	1000.0	
40	locallocation CO transferdal	≥ 5.	5.0 nmol/mol (Zero)	-0.470	Uint.pos			
00	III WELLER EIN COZ WILLI SOO DITIONI IN	≥ 5.	5.0 nmol/mol (Span)	1.430		000	9000	
d	1-11-1000 E-1114 1-15-17-1	≥ 5.	5.0 nmol/mol (Zero)	0.000	5	60.03	0.0080	
80	Interrerent NH ₃ mit 200 nmai/mai	≤ 5.0	5.0 nmol/mol (Span)	0.800	U _{int, neg}			
9	Averaging effect	< 7.09	7.0% of measured value	-1.350	Uav	-0.82	0.6647	
18	Difference sample/calibration port	VI	1.0%	-0.260	U _{Asc}	-0.27	0.0740	
21	Converter efficiency	ΛΙ	98	98.90	UEC	1.15	1.3239	
23	Uncertainty of test gas	VI	3.0%	2.000	Ucg	1.05	1.0941	
			Combined standard uncertainty	standard un	ncertainty	n°	4.2981	lam√omn
			E	Expanded uncertainty	ncertainty	n	8.5963	lam/omn
			Relative ex	Relative expanded uncertainty	ncertainty	M	8.22	%
			Maximum allowed expanded uncertainty	panded un	ncertainty	Wreq	15	%
		ĺ						

Expanded uncertainty laboratory, system 2

Up. 2 0.04 Up. B 0.01 Up. B 5.37 Up. B 1.02 Up. B 0.60 Up. B 0.00	0.04 0.01 0.01 0.51 5.37 1.02 0.60 0.02	0.04 0.01 0.51 5.37 1.02 0.60 0.02	0.04 0.04 0.01 0.51 5.37 1.02 0.60 0.02	0.04 0.01 0.01 0.05 1.02 0.60 0.00 0.02	0.04 0.01 0.01 1.02 0.60 0.00 0.02 -0.26	0.00 0.01 0.01 1.02 0.02 0.02 0.38	04 004 001 002 002 002 002 002 003 003 003 003 003	4 1 1 1 2 0 0 0 8 8 8 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
,, E E Q + + -							0 0 0 0 0 0 0 0	0.00 0.	0.04 0.01 0.01 1.02 0.02 0.38 0.38 0.24 1.26	0.04 0.01 0.051 1.02 0.02 0.02 0.038 0.38 0.38 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.04 0.051 0.051 1.02 0.02 0.02 0.038 0.38 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24	0.04 0.01 0.051 1.02 0.05 0.06 0.02 0.02 0.28 0.38 0.38 0.38 1.26 1.26 1.26 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
										0	0.190	0
0.190 alue 0.840 alue 0.450 0.450 0.240 0.006										0.190 alue 0.840 0.840 0.0450 0.0240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	0.190 alue 0.840 0.840 0.0450 0.0240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	0.190 alue 0.840 0.840 0.0450 0.0240 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000
 4.0% of measured value 8.0 nmol/mol/K 3.0 nmol/mol/K 3.0 nmol/mol/K 0.30 nmol/mol/V 										4.0% of measu 8.0 nmol/m 3.0 nmol/m 3.0 nmol/m 0.30 nmol/mol 10 nmol/mol 5.0 nmol/mol 5.0 nmol/mol 5.0 nmol/mol 5.0 nmol/mol 5.0 nmol/mol 5.0 nmol/mol 8.0 nmol/mol 3.0% of measu 1.0% of measu	4.0% of measu 8.0 nmol/m 3.0 nmol/m 3.0 nmol/m 3.0 nmol/m 10 nmol/mol 5.0 nmol/mol 3.0% 1.0% of measu 9.8 8.0%	4.0% of measuring 8.0 nmol/mol 8.0 nmol/mol 3.0 nmol/mol (3.0 nmol/mol (5.0 nmol/mol (5.0 nmol/mol (5.0 nmol/mol (7.0% of measuring 98 3.0% C
alue s s	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value sage at 1h-limit value sage at 1h-limit value sage at 1h-limit value	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value sage at 1h-limit value smol/mol	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value sage at 1h-limit value smol/mol	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value seage at 1h-limit value semo/mol serature	sesure at 1h-limit value serature at 1h-limit value seraturulum se	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value sage at 1h-limit value serature at 1h-limit value serature at 1h-limit value serature at 1h-limit value seraturollumol seraturolumol seraturolumolumolumolumolumolumolumolumolumolum	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value seage at 1h-limit value seage at 1h-limit value seamol/mol seamol/mol/mol seamol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value seage at 1h-limit value seage at 1h-limit value seam/mol se	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value seage at 1h-limit value seage at 1h-limit value seam/mol seam/mol seam/mol seam/mol seam/mol seam/mol seam seam seam seam seam seam seam seam	sesure at 1h-limit value serature at 1h-limit va	sesure at 1h-limit value serature at 1h-limit value serature at 1h-limit value sege at 1h-limit value sege at 1h-limit value segmol/mol segmol/mol/mol segmol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	sesure at 1h-limit value serature at 1h-limit va
erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value s	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value smo/mol	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value smol/mol	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value seraturel mol/mol seraturel se	serature at 1h-limit value serature at 1h-limit value sage at 1h-limit value semul'mol semul'mol semul'mol semul'mol semul'mol semul'mol	erature at 1h-limit value serature at 1h-limit value sege at 1h-limi	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value smo/mol sm	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value semol/mol semol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value semo/mol	erature at 1h-limit value serature at 1h-limit value sage at 1h-limit value semol/mol semol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	Section	Section	So nmol/m So nmol/m
serature at 1h-limit value sage at 1h-limit value	berature at 1h-limit value sage at 1h-limit value smo/mol	serature at 1h-limit value sage at 1h-limit value smol/mol	age at 1h-limit value s mol/mol s mol/mol s	age at 1h-limit value s age at 1h-limit value s mol/mol s impl/mol s	age at 1h-limit value s age at 1h-limit value s mol/mol s mol/mol s mol/mol s mol/mol s mol/mol s	oerature at 1h-limit value sage at 1h-limit value smo/mol scannol/mol smo/mol smo/mol scannol/mol scan	berature at 1h-limit value \$ age at 1h-limit value \$ mol/mol \$ mol/mol \$ mol/mol \$ tion port \$	berature at 1h-limit value s age at 1h-limit value s mol/mol s mol/mol s mol/mol s mol/mol s y	serature at 1h-limit value s age at 1h-limit value s mol/mol s mol/mol s mol/mol s y as as s age at 1h-limit value s s mol/mol s s tion port s ag s	3.0 nmol/n age at 1h-limit value \$ 3.0 nmol/n age at 1h-limit value \$ 0.30 nmol/n age at 1h-limit value \$ 10 nmol/mol as 10 nmol/mol as \$ 5.0 nmol/mol as \$ \$ \$ \$ \$ \$ \$ \$ \$	3.0 nmol/n age at 1h-limit value \$ 3.0 nmol/n age at 1h-limit value \$ 0.30 nmol/mol/mol \$ 10 nmol/mol \$ 10 nmol/mol \$ 5.0 nm	3.0 nmol/mage at 1h-limit value \$ 3.0 nmol/mage at 1h-limit value \$ 0.30 nmol/mage at 1h-limit value \$ 1.0 nmol/mol (\$ \$ 1.0 nmol/mol (\$ \$ 5.0 nmol/mol (\$ \$ 5.0 nmol/mol (\$ \$ \$ 5.0 nmol/mol (\$ \$ \$ \$ 0.0 nmol/mol (\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
≤ 0.30 nmol/mol/V	≤ 0.30 nmol/mol/V ≤ 10 nmol/mol (Zero)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span) \$ 5.0 nmol/mol (Zero)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span) \$ 5.0 nmol/mol (Zero) \$ 5.0 nmol/mol (Span)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span) \$ 5.0 nmol/mol (Span)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span) \$ 5.0 nmol/mol (Zero)	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Span) \$ 5.0 nmol/mol (Span) \$ 5.0 nmol/mol (Zero) \$ 5.0 nmol/mol (Span) \$ 5.0 nmol/mol (Span) \$ 5.0 nmol/mol (Span) \$ 7.0% of measured value \$ 7.0% of measured value \$ 1.0%	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Sean) \$ 10 nmol/mol (Sean) \$ 5.0 mol/mol (Sean) \$ 5.0 mol/mol (Sean) \$ 5.0 mol/mol (Sean) \$ 5.0 mol/mol (Sean) \$ 5.0 mol/mol/mol (Sean) \$ 5.0 mol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	\$ 0.30 nmol/mol/V \$ 10 nmol/mol (Zero) \$ 10 nmol/mol (Zero) \$ 5.0 nmol/mol (Zero) \$ 5.0 nmol/mol (Zero) \$ 5.0 nmol/mol (Zero) \$ 5.0 nmol/mol (Span) \$ 5.0 mol/mol (Span) \$ 5.0 mol/mol/mol (Span) \$ 5.0 mol/mol/mol/mol/mol/mol/mol/mol/mol/mol/	S 0.30 mmol/mol/mol S 10 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 7.0% of measu. S 7	S 0.30 mmol/mol/mol S 10 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 5.0 mmol/mol S 7.0% of measu. S 7	S
	≤ 10 nmv/mol (Zero)	\$ 10 nmv/mol (Zero) \$ 10 nmv/mol (Span)	10 mm/mol (Sea)	S 10 mm/mal (Zero) S 10 mm/mal (Span) S 10 mmol/mal (Span) S 5.0 mmol/mal (Span) S 5.0 mmol/mal (Span)	10 mmol/mol 2	mol/mol \$ 10 nmol/mol (Zero) 0.000 s 10 nmol/mol (Span) 0.000 s 5.0 nmol/mol (Zero) 0.600 s 5.0 nmol/mol (Span) 0.430 s 5.0 nmol/mol (Zero) -0.240 s 5.0 nmol/mol (Span) 1.410 s 7.0% of measured value -1.310	10 mmol/mol 5	The following Street The following The	To mol/mol S	March Marc	10 mmol/mol 5 10 mmol/mol 10 mmol/mol 5 5.0 mmol/mol 5 5 5 5 5 5 5 5 5	10 mmol/mol 5 10 mmol/mol 10 mmol/mol 5 5.0 mmol/mol 5 5 5 5 5 5 5 5 5

Combined uncertainty, laboratory and field, system 1

						Scharlyon	(Logical) people	
Measured component	NO ₂					1h-limit value:	104.6	nmol/mol
No.	Performance characteristic	L	Performance criterion	Result	2	Partial uncertainty	Square of partial uncertainty	
1	Repeatability standard deviation at zero	VI	1.0 nmol/mol	0.310	Urz	90.0	0.0035	
2	Repeatability standard deviation at 1h-limit value	VI	3.0 nmol/mol	0.270	Ur,h	not considered, as \2*ur,lh = 0,01 < ur, f		
8	"lack of fit" at 1h-limit value	VI	4.0% of measured value	0.720	Ulh	0.43	0.1891	
4	Sensitivity coefficient of sample gas pressure at 1h-limit value	VI	8.0 nmol/mol/kPa	1.290	dån	3.56	12.6928	
5	Sensitivity coefficient of sample gas temperature at 1h-limit value	VI	3.0 nmol/mol/K	0.040	ugt	0.09	0.0086	
9	Sensitivity coefficient of surrounding temperature at 1h-limit value	VI	3.0 nmol/mol/K	0.620	Ust	1.55	2.3938	
7	Sensitivity coefficient of electrical voltage at 1h-limit value	VI	0.30 nmol/mol/V	0.045	'n	0.13	0.0171	
83	Interferent H.O with 21 mmol/mol	VI	10 nmo/mol (Zero)	060.0	11	0.04	00000	
50	HIGHERTON WILLS I HINOVINO	VI	10 nmol/mol (Span)	-0.300	OZHN	0.0	0.000	
do	Interferent CO with 500 imalimal	VI	5.0 nmol/mol (Zero)	-0.470	Uintpos			
6	Interference of wild book prinoring	VI	5.0 nmol/mol (Span)	1.430		000	0000	
		VI	5.0 nmol/mol (Zero)	0.000	5	60.0	0.0086	
33	Interferent NH ₃ mit 200 nmol/mol	VI	5.0 nmol/mol (Span)	0.800	Untneg			
6	Averaging effect	VI	7.0% of measured value	-1.350	Uav	-0.82	0.6647	
10	Reproducibility standard deviation under field conditions	VI	5.0% of average over 3 months	3.550	J.'n	3.71	13.7886	
11	Long term drift at zero level	VI	5.0 nmol/mol	-0.510	Udjiz	-0.29	0.0867	
12	Long term drift at span level	VI	5.0% of max of certification range	2.510	u _{l,b}	1.52	2.2977	
18	Difference sample/cali bration port	VI	1.0%	-0.260	U _{ASC}	-0.27	0.0740	
21	Converter efficiency	ΛΙ	86	98.900	OBD	1.15	1.3239	
23	Uncertainty of test gas	VI	3.0%	2.000	Uog	1.05	1.0941	
			Combined standard uncertainty	standard u	ncertainty	°n	5.8861	nmo/mol
		Ī	3	Expanded uncertainty	ncertainty	n	11.7723	nmol/mol
			Relative e	Relative expanded uncertainty	certainty	W	11.25	%
			daichean bobacase bought munischil	boboon	. doing	707	45	/0

Combined uncertainty, laboratory and field, system 2

Measuring device:	Ecotech Serinus 40			Ĭ		Serial-No.:	13-0094 (Device 2)	
Measured component	NO2					1h-limit value:	104.6	nmoVmol
No.	Performance characteristic		Performance criterion	Result	P.	Partial uncertainty	Square of partial uncertainty	
-	Repeatability standard deviation at zero	VI	1.0 nmol/mol	0.190	Urz	0.04	0.0014	
N	Repeatability standard deviation at 1h-limit value	VI	3.0 nmol/mol	0.190	ų.	not considered, as \2*ur,lh = 0,01 < ur,f		
က	"lack of fit" at 1h-limit value	VI	4.0% of measured value	0.840	ų,	0.51	0.2573	V
4	Sensitivity coefficient of sample gas pressure at 1h-limit value	VI	8.0 nmol/mol/kPa	1.970	ď	5.37	28.8054	
5	Sensitivity coefficient of sample gas temperature at 1h-limit value	VI	3.0 nmo/mo/K	0.450	Ugt	1.02	1.0438	
9	Sensitivity coefficient of surrounding temperature at 1h-limit value	VI	3.0 nmol/mol/K	0.240	Ust	09'0	0.3647	
7	Sensitivity coefficient of electrical voltage at 1h-limit value	VI	0.30 nmol/mol/V	9000	'n	0.02	0.0003	
æ	Interferent H ₂ 0 with 21 mmol/mol	VI	10 nmol/mol (Zero)	-0.300	Illino	92 0-	00200	
8	THE COURT OF WALLS IN THE COURT OF THE COURT	VI	10 nmol/mol (Span)	-0.570	aHso	07.0	00.000	
8	Indiposit Of the Often of Indian	VI	5.0 nmol/mol (Zero)	0.600	Uintpos			
00	Illication of will boo priorition	VI	5.0 nmol/mol (Span)	0.430		000	200	
0	La colle come OOC bine 1114 because absorbed	VI	5.0 nmol/mol (Zero)	-0.240	5	0.30	0.1434	
30	Interferent NH3 fillt 200 filmovition	VI	5.0 nmol/mol (Span)	1.410	Untneg			
6	Averaging effect	VI	7.0% of measured value	-1.310	Uav	62'0-	0.6259	
10	Reproducibility standard deviation under field conditions	VI	5.0% of average over 3 months	3.550	Ur,f	3.71	13.7886	
11	Long term drift at zero level	VI	5.0 nmol/mol	0.580	Udilz	0.33	0.1121	
12	Long term drift at span level	VI	5.0% of max. of certification range	2.550	Udih	1.54	2.3715	
18	Difference sample/calibration port	VI	1.0%	0.230	U _{ASC}	0.24	0.0579	
21	Converter efficiency	ΛΙ	86	98.800	OBO	1.26	1.5755	
23	Uncertainty of test gas	VI	3.0%	2.000	Пœ	1.05	1.0941	
			Combined standard uncertainty	standard u	ncertainty	^o n	7.0932	nmol/mol
			3	Expanded uncertainty	ncertainty	Π	14.1864	nmol/mol
			Relative 6	Relative expanded uncertainty	certainty	W	13.56	%
			Maximum allowed expanded uncertainty	xpanded u	ncertainty	Wreq	15	%