CERTIFICATE
 of Product Conformity (QAL1)

Certificate No.: 0000053810_11
AMS designation: Set CEM CERT 7 MB 1957 for $\mathrm{CO}, \mathrm{NO}, \mathrm{SO}_{2}, \mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{NO}$ and O_{2}
Manufacturer: Siemens AG
Östliche Rheinbrückenstraße 50
76187 Karlsruhe
Germany
Test Laboratory: TÜV Rheinland Energy GmbH
This is to certify that the AMS has been tested
and found to comply with the standards:
EN 15267-1: 2009, EN 15267-2: 2009, EN 15267-3: 2007
and EN 14181: 2014
Certification is awarded in respect of the conditions stated in this certificate
(this certificate contains 36 pages).
The present certificate replaces certificate 0000053810_10 dated 05 March 2018.

Suitability Tested
EN 15267
QAL1 Certified
Regular Surveillance
www.tuv.com ID 0000053810

Publication in the German Federal Gazette (BAnz) of 22 July 2019

Federal Environment Agency
Dessau, 05 November 2019

Dr. Marcel Langner
Head of Section II 4.1

Expiry date:
21 July 2024
TÜV Rheinland Energy GmbH
Cologne, 04 November 2019

ppa. Dr. Peter Wilbring

www. umwelt-tuv.eu tre@umwelt-tuv.eu Phone: $+49221806-5200$	TÜV Rheinland Energy GmbH Am Graven Stein 51105 Köln
Test institute accredited to EN ISO/IEC 17025:2005 by DAkS (German Accreditation Body).	
This accreditation is limited to the accreditation scope defined in the enclosure to the certificate D-PL-11120-02-00.	
qal1.de \quad info@qal1.de	Page 1 of 36

Certificate

0000053810_11 / 05 November 2019

Test Report:
 Initial certification:
 Expiry date:
 Publication:

936/21242490/A dated 27 February 2019
05 March 2013
21 July 2024
BAnz AT 22.07.2019 B8, chapter I number 1.5

Approved application

The tested AMS is suitable for use at combustion plants according to Directive 2010/75/EU, chapter III ($13^{\text {th }}$ BlmSchV), plants in compliance with TA Luft and plants according to the $27^{\text {th }}$ BImSchV. Equipped with the SIPROCESS UV600-7MB2621 module the AMS is additionally suitable for waste incineration plants according to Directive 2010/75/EU, chapter IV ($17^{\text {th }}$ BlmSchV) for monitoring the components $\mathrm{NO}, \mathrm{NO}_{2}$ and SO_{2}. Finally, when equipped with the Ultramat 6, Ultramat 6-2K or Ultramat/Oxymant 6 , the AMS is fit for use at plants according to EU Directive 2010/75/EU chapter IV ($17^{\text {th }}$ BImSchV) for monitoring components CO, NO and SO_{2}. The measured ranges have been selected so as to ensure as broad a field of application as possible.

The suitability of the AMS for this application was assessed on the basis of a laboratory test and several field tests at various waste incineration plants.

The AMS is approved for an ambient temperature range of $+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
The notification of suitability of the AMS, performance testing and the uncertainty calculation have been effected on the basis of the regulations applicable at the time of testing. As changes in legal provisions are possible, any potential user should ensure that this AMS is suitable for monitoring the limit values and oxygen concentrations relevant to the application.

Any potential user should ensure, in consultation with the manufacturer, that this AMS is suitable for the installation at which it will be installed.

Basis of the certification

This certification is based on:

- Test report no. 936/21242490/A dated 27 February 2019 issued by TÜV Rheinland Energy GmbH
- Suitability announced by the German Federal Environment Agency (UBA) as the relevant body
- The ongoing surveillance of the product and the manufacturing process

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019
Publication in the German Federal Gazette: BAnz AT 22.07.2019 B8, chapter I number 1.5 UBA announcement dated 28 June 2019:

AMS designation:

Set CEM CERT 7MB1957 for CO, NO, $\mathrm{NO}_{2}, \mathrm{NOx}, \mathrm{SO}_{2}, \mathrm{CO}_{2}$ and O_{2}

Manufacturer:

SIEMENS AG, Karlsruhe
Field of application:
Modular measuring system for measurements at plants according to the $13^{\text {th }}, 17^{\text {th }}$, and $27^{\text {th }}$ BlmSchV as well as plants under the TA Luft

Measuring ranges during performance testing:

Component	Modul Type	Certification range	Additional ranges		Unit	Maintenance interval
CO	Ultramat 23-7MB2355-Z - T13 / T23 / T33 Ultramat 23-7MB2357-Z - T13 /T23 / T33	0-200	0-1250	-	$\mathrm{mg} / \mathrm{m}^{3}$	12 month
	Ultramat 23-7MB2358-Z-T13 / T23	0-375	0-1250	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	Ultramat 23-7MB2355-Z-T14 / T24 / T34 Ultramat 23-7MB2357-Z-T14 / T24 / T34	0-1250	0-6000	-	$\mathrm{mg} / \mathrm{m}^{3}$	12 month
	$\begin{gathered} \text { Ultramat } 6 \text { LR - Z + Y27 } \\ \text { Ultramat 6-2K LR - Z + Y27 + Y } 28 \\ \text { Ultramat/Oxymat } 6 \mathrm{LR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \end{gathered}$	0-75	0-1250	0-3000	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	$\begin{gathered} \text { Ultramat } 6 \mathrm{HR}-\mathrm{Z}+\mathrm{Y} 27 \\ \text { Ultramat 6-2K HR }-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \\ \text { Ultramat/Oxymat } 6 \mathrm{HR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \end{gathered}$	0-1000	0-10000	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	Ultramat 6-2K LR - HR - Z - Y27 + Y28	$\begin{gathered} 0-75^{3)} \\ 0-1000^{4)} \\ \hline \end{gathered}$	$\begin{gathered} 0-1250^{3)} \\ 0-10000^{4)} \\ \hline \end{gathered}$	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
NOx	Ultramat 23-7MB2355-Z-T13 / T23 / T33 Ultramat 23-7MB2357-Z-T13 /T23 / T33	$\begin{aligned} & 0-150^{1)} \\ & 0-230^{2)} \end{aligned}$	$\begin{gathered} 0-750^{1)} \\ 0-1150^{2)} \\ \hline \end{gathered}$	$\begin{aligned} & 0-2000^{1)} \\ & 0-3067^{2)} \\ & \hline \end{aligned}$	$\mathrm{mg} / \mathrm{m}^{3}$	12 month
	Ultramat 23-7MB2358-Z-T13 / T23	$\begin{aligned} & 0-400^{11} \\ & 0-613^{2)} \end{aligned}$	$\begin{aligned} & 0-2000^{11} \\ & 0-3067^{2)} \\ & \hline \end{aligned}$	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
NO	SIPROCESS UV600-7MB2621-Z-Y17	0-50	0-200	0-2000	$\mathrm{mg} / \mathrm{m}^{3}$	2 weeks
	Ultramat 23-7MB2355-Z - T14 / T24 / T34 Ultramat 23-7MB2357-Z - T14 / T24 / T34	0-600	0-3000	-	$\mathrm{mg} / \mathrm{m}^{3}$	12 month
	$\begin{gathered} \text { Ultramat } 6 \mathrm{LR}-\mathrm{Z}+\mathrm{Y} 27 \\ \text { Ultramat } 6 \text {-2K LR }-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \\ \text { Ultramat/Oxymat } 6 \mathrm{LR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \end{gathered}$	0-100	0-2000	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	$\begin{gathered} \text { Ultramat } 6 \mathrm{HR}-\mathrm{Z}+\mathrm{Y} 27 \\ \text { Ultramat } 6-2 \mathrm{KHR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \\ \text { Ultramat/Oxymat } 6 \mathrm{HR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28 \end{gathered}$	0-1000	0-10000	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	Ultramat 6-2K LR - HR - Z - Y27 + Y28	$\begin{gathered} 0-100^{3} \\ 0-1000^{4)} \\ \hline \end{gathered}$	$\begin{gathered} 0-2000^{3} \\ 0-10000^{4)} \\ \hline \end{gathered}$	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month

Certificate

0000053810_11 / 05 November 2019

TÜVRheinland
Precisely Right.

Component	Modul Type	Certification range	Additional ranges		Unit	Maintenance interval
NO_{2}	SIPROCESS UV600-7MB2621-Z-Y17	0-50	0-500	-	$\mathrm{mg} / \mathrm{m}^{3}$	3 month with weekly calibration with the internal calibration cuvette, otherwise 2 weeks
	Ultramat 23-7MB2355-Z-T25 / T35 Ultramat 23-7MB2357-Z-T25 / T35 Ultramat 23-7MB2358-Z - T35	0-50	0-1000	-	$\mathrm{mg} / \mathrm{m}^{3}$	4 weeks
SO_{2}	Ultramat 23-7MB2355-Z-T13 / T23 / T33 Ultramat 23-7MB2357-Z-T13/T23/T33	0-400	0-2000	0-7000	$\mathrm{mg} / \mathrm{m}^{3}$	12 month
	Ultramat 23-7MB2358-Z-T13 / T23	0-400	0-2000	0-7000	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	SIPROCESS UV600-7MB2621-Z - Y17	0-75	0-130	0-2000	$\mathrm{mg} / \mathrm{m}^{3}$	6 month with weekly calibration with the internal calibration cuvette, otherwise 2 weeks
	Ultramat $6 \mathrm{LR}-\mathrm{Z}+\mathrm{Y} 27$ Ultramat $6-2 \mathrm{KLR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28$ Ultramat/Oxymat $6 \mathrm{LR}-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28$	0-75	0-1500	-	$\mathrm{mg} / \mathrm{m}^{3}$	6 month
	Ultramat 23-7MB2355-Z - T25 / T35 Ultramat 23-7MB2357-Z-T25 / T35 Ultramat 23-7MB2358-Z-T35	0-70	0-75	0-1250	$\mathrm{mg} / \mathrm{m}^{3}$	4 weeks
CO_{2}	Ultramat 23-7MB2355-Z-T13 / T23 / T33 Ultramat 23-7MB2357-Z-T13 / T23 / T33	0-25	-	-	Vol.-\%	12 month
	SIPROCESS GA700 Ultramat 7	0-25	-	-	Vol.-\%	4 weeks
$\mathrm{O}_{2 \text { (paramagreit) }}$	Ultramat 23-7MB2355-Z-T13/T14 Ultramat 23-7MB2357-Z-T13/T14	0-25	-	-	Vol.-\%	12 month
	Ultramat 23-7MB2358-Z-T13/T14	0-25	-	-	Vol.-\%	6 month
	Oxymat 6-Z + Y27	0-25	0-5	-	Vol.-\%	6 month
	Ultramat / Oxymat $6-\mathrm{Z}+\mathrm{Y} 27+\mathrm{Y} 28$	0-25	0-5	-	Vol.-\%	6 month
	SIPROCESS GA700 Oxymat 7	0-25	0-5	-	Vol.-\%	4 weeks
$\mathrm{O}_{2 \text { (electrochemic) }}$	Ultramat 23-7MB2355-Z - T23/T24/T25 Ultramat 23-7MB2357-Z - T23/T24/T25	0-25	0-5	-	Vol.-\%	12 month
	Ultramat 23-7MB2358-Z - T23/T24/T25	0-25	0-5	-	Vol.-\%	6 month

Software versions:

Ultramat 23-7MB2355
4.02.04

Ultramat 23-7MB2357
4.02.04
4.02.04

Ultramat 23-7MB2358
4.8.6
4.8.6

Ultramat 6-2K
4.8.6
4.8.6

Ultramat / Oxymat 6
Set CEM CERT 7MB1957 Rev. 1.0
SIEMENS SIMATIC
SIPROCESS UV600-7MB2621
BCU: 9150883_3.003
Gasmodul: 9137582_3.002
UV-Module: 9139736_3.005
SIPROCESS GA700 Ultramat 7 CALC 1.40.03 / ADU 1.33.00
SIPROCESS GA700 Oxymat 7 CALC 1.40.05 / ADU 1.20.

Restriction:

When using the Ultramat 23-7MB2355, Ultramat 23-7MB2357 or Ultramat 23-7MB2358 modules, the system cabinet must be equipped with an A / C unit.

Certificate:

0000053810_11 / 05 November 2019

TÜVRheinland
Precisely Right.

Notes:

1. When equipped with the SIPROCESS UV600-7MB2621 module for monitoring $\mathrm{NO}, \mathrm{NO}_{2}$ and SO_{2} or with the Ultramat 6, Ultramat 6-2K and Ultramat / Oxymat 6 module for monitoring CO, NO and SO_{2} as well as the Ultramat 23-7MB2355-Z-T25/T35, Ultramat 23-7MB2357-Z-T25/T35 and Ultramat 23-7MB2358-Z-T25/T35 module for SO_{2}, the modular Set CEM CERT 7MB1957 measuring system may also be used for applications according to IED, chapter IV (17 ${ }^{\text {th }}$ BlmSchV).
2. For automatic zero adjustments, the modules of the Ultramat 23 series must be operated at a 24 -hour interval. The modules of the Ultramat 6 series must be operated at a one-week interval for automatic span point adjustments.
3. For improved cross-sensitivity to CO_{2} at the CO measurement channel, the UItramat $23-7 \mathrm{MB} 2355$, Ultramat 23-7MB2357 and Ultramat $23-7 \mathrm{MB} 2358$ modules of the Set CEM CERT 7MB1957 series have been sold with a modified CO receiver since April 2014 which is clearly marked by serial number E4 and onwards in the middle section.
4. The modules Ultramat 23-7MB2355, Ultramat 23-7MB2357 and Ultramat 237MB2358 need to be operated with the Thermo-AUTOCAL feature activated.
5. The modular Set CEM CERT 7MB1957 measuring system may alternatively be equipped with a sampling probe (SP2000-H) manufactured by M\&C
TechGroup Germany GmbH and a sample gas cooler (EGK 2-19) manufactured by Bühler Technologies GmbH.
6. The sample gas cooler (EGK 2-19) manufactured by Bühler Technologies GmbH implemented in the modular CEM CERT 7MB1957 measuring system may be equipped with a PVDF or glass cooling element. In any case, a glass cooling element shall be used for the SIPROCESS UV600-7MB2621 module.
7. The modular Set CEM CERT 7MB1957 measuring system for determining NO_{x} is equipped with an NO_{x} type gas converter CG-2 manufactured by M\&C Tech Group Germany GmbH.
8. When adding additional modules to the Set CEM CERT 7MB1957 measuring system, each combination of modules needs to be checked for functionality as part of testing proper installation and the maintenance interval has to be determined. Maintenance work must be spread over several days in order to comply with the requirements for outage times specified by the $13^{\text {th }}$ and $17^{\text {th }}$ BlmSchV.
9. The Ultramat 6, Ultramat 6-2K, Ultramat / Oxymat 6 and Oxymat 6 modules need to be operated with weekly AUTO zero and AUTO span adjustments using test gases from pressurised gas bottles.
10. The Set CEM CERT 7MB1957 comes with a measuring cabinet with a degree of protection of IP40. The system cabinet can be equipped with an air conditioning unit or a ventilator unit.
11. It is possible to integrate the central unit of the QAL1 certified LDS 6 7MB6121 NH_{3} and LDS 67 MB 6121 HCl measuring systems as a single module into the system cabinet of the Set CEM CERT 7MB1957 measuring system.
12. Supplementary test (for the purpose of approving additional measuring modules and integrating the LDS6 7MB6121) as regards Federal Environment Agency notices of 13 July 2017 (BAnz AT 31.07.2017 B12, chapter I number 3.1) and of 3 July 2018 (BAnz AT 17.07.2018 B9, chapter III $23^{\text {rd }}$ notification).

Test Report:

TÜV Rheinland Energy GmbH, Cologne
Report no. 936/21242490/A dated 27 February 2019

Certificate:

0000053810_11 / 05 November 2019

Certified product

This certification applies to automated measurement systems conforming to the following description:

The complete tested modular SIPROCESS UV600-7MB2621 measuring system comprises a heated sampling probe, a heated sample gas line, a two-stage test gas cooler, the sample gas pump and a maximum of three measurement component analysers from the Ultramat 6, Ultramat 6 2-K, Oxymat 6, Ultramat/Oxymat 6, Ultramat 23-7MB2355, Ultramat 23-7MB2357, Ultramat 23-7MB2358, SIPROCESS GA700-Ultramat 7, SIPROCESS GA700-Oxymat 7 or SIPROCESS UV600-7MB2621.

Measuring cabinet	Set CEM CERT 7MB1957 system cabinet	
Probe	Manufacturer	Bühler Technologies GmbH
	Type	Gas 222.20-Cal-twin incl. ceramic filter
Alternative probe	Manufacturer	M\&C TechGroup Germany GmbH
	Type	SP2000-H incl. ceramic filter (length 100 cm), heated to $180^{\circ} \mathrm{C}$
Heated sample gas line	Temperature	$180{ }^{\circ} \mathrm{C}$
	Length:	50 m in the field, 10 m in the lab
	Diameter	(inner): 4 mm
	Material	PTFE
Compressor cooler	Manufacturer	M\&C TechGroup Germany GmbH
	Type	CSS V1-S
Alternative cooler	Manufacturer	Bühler Technologies GmbH
	Type	EGK 2-19, 2 stage, dew point $3^{\circ} \mathrm{C}$
Sample gas pump	Manufacturer	Bühler Technologies GmbH
	Type	P2.3
$\mathrm{NO}_{\underline{x}}$ converter	Manufacturer	M\&C TechGroup Germany GmbH
	Type	Gas converter CG-2
Analyser modules	Manufacturer	Siemens AG
	Type	Ultramat 6 Ultramat 6 2-K Oxymat 6 Ultramat / Oxymat 6 Ultramat 23-7MB2355 Ultramat 23-7MB2357 Ultramat 23-7MB2358 SIPROCESS UV600 SIPROCESS GA700 Ultramat 7/ Oxymat 7

Certificate:

0000053810_11 / 05 November 2019

TÜVRheinland
Precisely Right.

The Set CEM CERT 7MB1957 comes with a measuring cabinet with a degree of protection of IP40. The system cabinet can be equipped with an air conditioning unit or a ventilator unit.
A sample gas pump with integrated vapour recovery for the purpose of controlling sample gas flows is situated between the first and the second stage of cooling. A fine particle filter for dust separation is integrated in the cooler housing. Downstream of the sample gas cooler, the gas flow is divided into two to three partial flows to simultaneously supply analyser modules arranged in parallel with sample gas. Gas oversupply is led out via a bypass. A condensate filter is placed immediately upstream of each analyser modules which blocks the gas path in the event of moisture coming through in order to protect the analysers. In the Ultramat 23 measuring modules, a (heated) converter is placed upstream of the condensate filter for measuring NO_{x}. A three-way valve is placed in front of the pump which serves to feed zero gas for automatic zero gas adjustment (AutoCal) and is controlled via the SIMATIC.
A second three-way valve is installed downstream of the pump which, controlled by SIMATIC, is able to time the supply of zero/test gases for automatic adjustments of zero and span points. Test gases may alternatively be fed manually via a third three-way valve.
The current software versions are:

Ultramat 23-7MB2355	V4.02.04
Ultramat 23-7MB2357	V4.02.04
Ultramat 23-7MB2358	V4.02.04
Ultramat 6	4.8 .6
Ultramat 6-2K	4.8 .6
Oxymat 6	4.8 .6
Ultramat / Oxymat 6	4.8 .6
SIEMENS SIMATIC	Set CEM CERT 7MB1957 Rev. 1.0
SIPRRCESS UV600-7MB2621	

SIPROCESS UV600-7MB2621

BCU:	$9150883 _3.003$
Gas module:	$9137582 _3.002$
UV modules:	91397363.005

SIPROCESS GA700 Ultramat 7 CALC 1.40.03 / ADU 1.33.00
SIPROCESS GA700 Oxymat 7 CALC 1.40.05 / ADU 1.20.05

General remarks

This certificate is based upon the equipment tested. The manufacturer is responsible for ensuring that on-going production complies with the requirements of the EN 15267. The manufacturer is required to maintain an approved quality management system controlling the manufacturing process for the certified product. Both the product and the quality management system shall be subject to regular surveillance.

If a product of the current production does not conform to the certified product, TÜV Rheinland Energy GmbH must be notified at the address given on page 1.

A certification mark with an ID-Number that is specific to the certified product is presented on page 1 of this certificate.

This document as well as the certification mark remains property of TÜV Rheinland Energy GmbH. Upon revocation of the publication the certificate loses its validity. After the expiration of the certificate and on request of TÜV Rheinland Energy GmbH this document shall be returned and the certificate mark must no longer be used.

The relevant version of this certificate and its expiration date are also accessible on the internet at gal1.de.

Certificate

0000053810_11 / 05 November 2019

Documentation history

Certification of the Set CEM CERT 7MB1957 measuring system is based on the documents listed below and the regular, continuous surveillance of the manufacturer's quality management system:

Initial certification according to EN 15267

Certificate no. 1630664-ts 05 March 2013
Expiry date of the certificate: $\quad 04$ March 2018
Test report 1630664 dated 15 September 2012, TÜV SÜD Industrie Service GmbH Publication: BAnz AT 05.03.2013 B10, chapter I number 6.1
UBA announcement dated 12 February 2013

Supplementary testing according to EN 15267

Certificate no. 1630664.2-ts 23 July 2013
Expiry date of the certificate: $\quad 04$ March 2018
Test report 1630664-2 dated 15 March 2013, TÜV SÜD Industrie Service GmbH
Publication: BAnz AT 23.07.2013 B4, chapter I number 4.1
UBA announcement dated 03 July 2013

Notifications in accordance with EN 15267

Statement issued by TÜV Süd Industrie Service GmbH dated 17 March 2013
Publication: BAnz AT 23.07.2013 B4, chapter V notification 26
UBA announcement dated 03 July 2013
(New software version)

Supplementary testing according to EN 15267

Certificate no. 1630664.3-ts 01 April 2014
Expiry date of the certificate: $\quad 04$ March 2018
Test report 1630664-3 dated 18 December 2013, TÜV SÜD Industrie Service GmbH
Publication: BAnz AT 01.04.2014 B12, chapter I number 4.2
UBA announcement dated 27 February 2014
Certificate no. 1630664.4a-ts 05 August 2014
Expiry date: 04 March 2018
Test report 1630664-4a dated 28 February 2014, TÜV SÜD Industrie Service GmbH
Publication: BAnz AT 05.08.2014 B11, chapter I number 5.3
UBA announcement dated 17 July 2014

Notifications in accordance with EN 15267

Statement issued by TÜV Süd Industrie Service GmbH dated 19 March 2014
Publication: BAnz AT 05.08.2014 B11, chapter V notification 3
UBA announcement dated 17 July 2014
(New software version)

Certificate:

0000053810_11 / 05 November 2019

Supplementary testing according to EN 15267

Certificate no. 1630664.4b-ts 05 August 2014
Expiry date:

$$
04 \text { March } 2018
$$

Test report 1630664-4b dated 28 February 2014, TÜV SÜD Industrie Service GmbH Publication: BAnz AT 05.08.2014 B11, chapter I number 5.4
UBA announcement dated 17 July 2014

Certificate no. 1797266-ts
Expiry date:

15 April 2015
04 March 2018

Test report 1797266 dated 18 September 2014, TÜV SÜD Industrie Service GmbH Publication: BAnz AT 02.04.2015 B5, chapter I number 4.1
UBA announcement dated 25 February 2015

Notifications in accordance with EN 15267

Statement issued by TÜV Süd Industrie Service GmbH dated 18 September 2015
Publication: BAnz AT 02.04.2015 B5, chapter IV notification 43
UBA announcement dated 25 February 2015
(New software version)
Correction issued by the Federal Environment Agency on 22 July 2015
Publication: BAnz AT 26.08.2015 B4, chapter IV correction 1
UBA announcement dated 22 July 2015 (missing second additional measuring range for NO_{x}
for the Ultramat 23-7MB2357-Z-T13 module)

Supplementary testing according to EN 15267

Certificate no. 2219424-ts 08 September 2015
Expiry date: 04 March 2018
Test report 2219424 dated 20 March 2015, TÜV SÜD Industrie Service GmbH
Publication: BAnz AT 26.08.2015 B4, chapter I number 3.2
UBA announcement dated 22 July 2015

Notifications in accordance with EN 15267

Statement issued by TÜV Süd Industrie Service GmbH dated 15 October 2015
Publication: BAnz AT 14.03.2016 B7, chapter IV correction 1
UBA announcement dated 18 February 2016
(additional second measuring range for CO
for the Ultramat $23-7 \mathrm{MB} 2357-\mathrm{Z}-\mathrm{T} 13$ module removed)

Supplementary testing according to EN 15267

Certificate no. 2435071ts
Expiry date:

Certificate:

0000053810_11 / 05 November 2019

Notifications in accordance with EN 15267

Statement issued by TÜV Süd Industrie Service GmbH dated 29 February 2016
Publication: BAnz AT 01.08.2016 B11, chapter V notification 29
UBA announcement dated 14 July 2016
(New software version)

Supplementary testing according to EN 15267

Certificate no. 0000053810_08: 25 April 2017
Expiry date: 04 March 2018
Test report: 936/21230405/A dated 31 August 2016
TÜV Rheinland Energy GmbH, Cologne
Publication: BAnz AT 15.03.2017 B6, chapter I number 4.1
UBA announcement dated 22 February 2017
Certificate no. 0000053810_09: 08 September 2017
Expiry date: 04 March 2018
Test report: 936/21230405/C dated 22 December 2016
TÜV Rheinland Energy GmbH, Cologne
Publication: BAnz AT 31.07.2017 B12, chapter I number 3.1
UBA announcement dated 13 July 2017
Renewal of the certificate in accordance with EN 15267

Certificate no. 0000053810_10:
Expiry date of the certificate:

05 March 2018
21 July 2024

Notifications in accordance with EN 15267

Statement issued by TÜV Rheinland Energy GmbH dated 08 December 2017
Publication: BAnz AT 26.03.2018 B8, chapter V notification 48
UBA announcement dated 21 February 2018
(Hardware and software changes)
Statement issued by TÜV Rheinland Energy GmbH dated 02 May 2018
Publication: BAnz AT 17.07.2018 B9, chapter III notification 23
UBA announcement dated 03 July 2018
(New software version)
Statement issued by TÜV Rheinland Energy GmbH dated 09 October 2018
Publication: BAnz AT 26.03.2019 B7, chapter IV notification 63
UBA announcement dated 27 February 2019
(Hardware and software changes)

Supplementary testing according to EN 15267

Certificate no. 0000053810_11: 05 November 2019
Expiry date: 21 July 2024
Test report: 936/21242490/A dated 27 February 2019
TÜV Rheinland Energy GmbH, Cologne
Publication: BAnz AT 22.07.2019 B8, chapter I number 1.5
UBA announcement dated 28 June 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 Ultramat 6
System 1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22
CO
0 - $75 \mathrm{mg} / \mathrm{m}^{3}$

	0.32	$\mathrm{mg} / \mathrm{m}^{3}$
-0.33	$\mathrm{mg} / \mathrm{m}^{3}$	
	1.00	$\mathrm{mg} / \mathrm{m}^{3}$
	-0.40	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{i}} \quad 1.00$	$\mathrm{mg} / \mathrm{m}^{3}$	
	0.576	$\mathrm{mg} / \mathrm{m}^{3}$

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity
(CS)

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

u_{D}	0.614	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\text {lof }}$	0.229	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{d}, \mathrm{z}}$	-0.650	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{d}, \mathrm{s}}$	0.606	$\mathrm{mg} / \mathrm{m}^{3}$
u_{t}	0.924	$\mathrm{mg} / \mathrm{m}^{3}$
u_{v}	0.082	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	0.576	$\mathrm{mg} / \mathrm{m}^{3}$
u_{p}	-0.079	$\mathrm{mg} / \mathrm{m}^{3}$
u_{rm}	0.606	$\mathrm{mg} / \mathrm{m}^{3}$

u^{2}

$0.377\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.052\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.423\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.367\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.854\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.007\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.332\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.006\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.368\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{c}=\sqrt{\sum_{*}\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$1.67 \mathrm{mg} / \mathrm{m}^{3}$
$3.27 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3} \quad 6.5$
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3} \quad 10.0$
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3} \quad 7.5$

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"
Combined standard uncertainty (u_{C})
Total expanded uncertainty

Siemens AG
Set CEM CERT 7MB1957 Ultramat 6
System 1 / System 3 / System 2 / System 4
NDIR

936/21230405/C
TÜV Rheinland
2016-12-22

CO
0 - $1000 \mathrm{mg} / \mathrm{m}^{3}$
$0.00 \mathrm{mg} / \mathrm{m}^{3}$
$0.00 \mathrm{mg} / \mathrm{m}^{3}$
$8.60 \mathrm{mg} / \mathrm{m}^{3}$
$-4.20 \mathrm{mg} / \mathrm{m}^{3}$
$8.60 \mathrm{mg} / \mathrm{m}^{3}$
$4.965 \mathrm{mg} / \mathrm{m}^{3}$
$u_{i} \quad 4.965 \mathrm{mg} / \mathrm{m}^{3}$

u_{D}	$2.042 \mathrm{mg} / \mathrm{m}^{3}$	
$\mathrm{u}_{\text {lof }}$	-1.732	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{d}, \mathrm{z}}$	3.464	$\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{d}, \mathrm{s}}$	-13.279	$\mathrm{mg} / \mathrm{m}^{3}$
u_{t}	5.700	$\mathrm{mg} / \mathrm{m}^{3}$
u_{v}	3.549	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	4.965	$\mathrm{mg} / \mathrm{m}^{3}$
u_{p}	0.842	$\mathrm{mg} / \mathrm{m}^{3}$
u_{rm}	$8.083 \mathrm{mg} / \mathrm{m}^{3}$	

$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$18.20 \mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
u^{2}
$4.170\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$3.000\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$11.999\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$176.332\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$32.490\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$12.595\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$24.651\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.709\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$65.333\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{3}$
7.1

U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{\mathbf{3}} \quad \mathbf{1 0 . 0}$
U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Siemens AG
Set CEM CERT 7MB1957 Ultramat 23
System 1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22

CO
0 - $1250 \mathrm{mg} / \mathrm{m}^{3}$

	0.00	$\mathrm{mg} / \mathrm{m}^{3}$
0.00	$\mathrm{mg} / \mathrm{m}^{3}$	
7.75	$\mathrm{mg} / \mathrm{m}^{3}$	
	-23.38	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	-23.38	$\mathrm{mg} / \mathrm{m}^{3}$
	-13.496	$\mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions * Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\max , \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$21.26 \mathrm{mg} / \mathrm{m}^{3}$
$41.66 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $600 \mathrm{mg} / \mathrm{m}^{3} \quad 6.9$
U in \% of the ELV $600 \mathrm{mg} / \mathrm{m}^{3} \quad 10.0$
U in \% of the ELV $600 \mathrm{mg} / \mathrm{m}^{3} \quad 7.5$

Certificate:

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 Ultramat 6
System 1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22

NO
0 - $100 \mathrm{mg} / \mathrm{m}^{3}$

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

	3.06	$\mathrm{mg} / \mathrm{m}^{3}$
	0.00	$\mathrm{mg} / \mathrm{m}^{3}$
3.20	$\mathrm{mg} / \mathrm{m}^{3}$	
	-0.50	$\mathrm{mg} / \mathrm{m}^{3}$
	3.20	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	1.848	$\mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
u_{i}
u^{2}

u_{D}	0.628	$\mathrm{mg} / \mathrm{m}^{3}$	0.394	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {lof }}$	-0.924	$\mathrm{mg} / \mathrm{m}^{3}$	0.854	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {d. }}$	1.386	$\mathrm{mg} / \mathrm{m}^{3}$	1.921	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {d.s }}$	0.751	$\mathrm{mg} / \mathrm{m}^{3}$	0.564	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{t}	0.896	$\mathrm{mg} / \mathrm{m}^{3}$	0.803	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{v}	0.582	$\mathrm{mg} / \mathrm{m}^{3}$	0.339	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{i}	1.848	$\mathrm{mg} / \mathrm{m}^{3}$	3.415	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{D}	-0.120	$\mathrm{mg} / \mathrm{m}^{3}$	0.014	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{rm}	0.808	$\mathrm{mg} / \mathrm{m}^{3}$	0.653	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

$\mathrm{mg} / \mathrm{m}^{3}$
$0.653\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\max , \mathrm{j}}\right)^{2}}$
$U=u_{C}{ }^{*} k=u_{c}{ }^{*} 1.96$
$2.99 \mathrm{mg} / \mathrm{m}^{3}$
$5.87 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $40 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $40 \mathrm{mg} / \mathrm{m}^{3}$
20.0

U in \% of the ELV $40 \mathrm{mg} / \mathrm{m}^{3}$

Certificate:

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Siemens AG
Set CEM CERT 7MB1957 Ultramat 6
System 1 / System 3 / System2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22
NO
0 - $1000 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
u^{2}

u_{D}	5.941	$\mathrm{mg} / \mathrm{m}^{3}$	35.295	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$U_{\text {lof }}$	4.041	$\mathrm{mg} / \mathrm{m}^{3}$	16.330	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$u_{\text {d. }}$	5.774	$\mathrm{mg} / \mathrm{m}^{3}$	33.339	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$u_{\text {d.s }}$	10.970	$\mathrm{mg} / \mathrm{m}^{3}$	120.341	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{t}	6.275	$\mathrm{mg} / \mathrm{m}^{3}$	39.376	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{v}	1.851	$\mathrm{mg} / \mathrm{m}^{3}$	3.426	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{i}	-19.110	$\mathrm{mg} / \mathrm{m}^{3}$	365.192	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{p}	-0.722	$\mathrm{mg} / \mathrm{m}^{3}$	0.521	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{rm}	8.083	$\mathrm{mg} / \mathrm{m}^{3}$	65.333	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

Relative total expanded uncertainty Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{3}$
10.2

U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{3}$
20.0
U in \% of the ELV $500 \mathrm{mg} / \mathrm{m}^{3}$

Certificate:

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 Ultramat 23
System 1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22

NO
0 - $600 \mathrm{mg} / \mathrm{m}^{3}$

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

	0.00	$\mathrm{mg} / \mathrm{m}^{3}$
0.00	$\mathrm{mg} / \mathrm{m}^{3}$	
	0.00	$\mathrm{mg} / \mathrm{m}^{3}$
-17.04	$\mathrm{mg} / \mathrm{m}^{3}$	
	-17.04	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	-9.838	$\mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

		5.466	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$	
u_{D}	2.338	$\mathrm{mg} / \mathrm{m}^{3}$	5.000	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {lof }}$	1.732	$\mathrm{mg} / \mathrm{m}^{3}$	3.000	23.523
$\mathrm{u}_{\text {d.z }}$	4.850	$\mathrm{mg} / \mathrm{m}^{3}$	$\left.\mathrm{~m}^{3}\right)^{2}$	
$\mathrm{u}_{\text {d.s }}$	6.582	$\mathrm{mg} / \mathrm{m}^{3}$	43.323	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{t}	3.005	$\mathrm{mg} / \mathrm{m}^{3}$	9.030	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{v}	$1.787 \mathrm{mg} / \mathrm{m}^{3}$	3.193	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$	
u_{i}	-9.838	$\mathrm{mg} / \mathrm{m}^{3}$	96.786	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{D}	0.577	$\mathrm{mg} / \mathrm{m}^{3}$	0.333	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{m}	4.850	$\mathrm{mg} / \mathrm{m}^{3}$	23.520	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$14.43 \mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$

U in \% of the ELV $200 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$
\mathbf{U} in \% of the ELV 200 mg/m ${ }^{\mathbf{3}}$

Certificate:

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Siemens AG
Set CEM CERT 7MB1957 Ultramat 6
System 1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22
SO_{2}
0 - $75 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage

	1.99	$\mathrm{mg} / \mathrm{m}^{3}$
-0.84	$\mathrm{mg} / \mathrm{m}^{3}$	
	1.10	$\mathrm{mg} / \mathrm{m}^{3}$
-2.80	$\mathrm{mg} / \mathrm{m}^{3}$	
u_{i}	-1.615	$\mathrm{mg} / \mathrm{m}^{3}$
	-1.80	

Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range
u_{D}
u_{10}

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\max , \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$

U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$ 20.0
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 Ultramat 23
System1 / System 3 / System 2 / System 4 NDIR

936/21230405/C
TÜV Rheinland
2016-12-22
CO_{2}
0-25 Vol.-\%

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

0.00	Vol.-\%
0.00	Vol.-\%
0.10	Vol.-\%
-0.30	Vol.-\%
-0.30	Vol.-\%
-0.173	Vol.-\%

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions * u
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"
Combined standard uncertainty (u_{C})
Total expanded uncertainty

$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum_{\left(\mathrm{u}_{\text {max } \mathrm{j}}\right)^{2}}}$	0.93 Vol. $-\%$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$	1.82 Vol. $-\%$

Relative total expanded uncertainty
U in \% of the range $25 \mathrm{Vol} .-\%$
Requirement of 2010/75/EU
U in \% of the range $25 \mathrm{Vol} .-\%$
U in \% of the range $25 \mathrm{Vol} .-\%$
Requirement of EN 15267-3

			u^{2}	
u_{D}	0.740	Vol. $-\%$	0.548	$(\text { Vol. }-\%)^{2}$
$u_{\text {lof }}$	0.058	Vol. $-\%$	0.003	$(\text { Vol. }-\%)^{2}$
$u_{\text {d. }}$	-0.289	Vol. $-\%$	0.084	$(\text { Vol. }-\%)^{2}$
$u_{\text {d.s }}$	-0.260	Vol. $-\%$	0.068	$(\text { Vol. }-\%)^{2}$
u_{t}	0.289	Vol. $-\%$	0.084	$(\text { Vol. }-\%)^{2}$
u_{v}	0.062	Vol. $-\%$	0.004	$(\text { Vol. }-\%)^{2}$
u_{v}	-0.173	Vol. $-\%$	0.030	$(\text { Vol. }-\%)^{2}$
u_{i}	0.000	Vol. $-\%$	0.000	$(\text { Vol. }-\%)^{2}$
u_{0}	0.202	Vol. $-\%$	0.041	$(\text { Vol. }-\%)^{2}$

Certificate:

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 Oxymat 6
System 1 / System 3 / System 2 / System 4 paramagnetic

936/21230405/C
TÜV Rheinland
2016-12-22
O_{2}
0 - 25 Vol.-\%

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

	0.00	Vol.-\%
	0.00	Vol.-\%
0.00	Vol.-\%	
	0.00	Vol.-\%
	0.00	Vol.-\%
u i $_{i}$	0.000	Vol.-\%

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"
Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\max , \mathrm{j}}\right)^{2}}$
0.25 Vol.-\%
$U=u_{c}{ }^{*} k=u_{c}{ }^{*} 1.96$
0.49 Vol.-\%

Relative total expanded uncertainty

Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the range 25 Vol.-\%
U in \% of the range $25 \mathrm{Vol} .-\%$
U in \% of the range $25 \mathrm{Vol} .-\%$

[^0]A value of 10.0% was used instead.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report
Siemens AG
Set CEM CERT 7MB 1957
TÜV 1 / TÜV 2
electrochemical
936/21230405/B
TÜV Rheinland
2016-09-12

Measured component

Certification range

O 2
0 - 25 Vol.-\%
(system with largest CS)
Uncertainty of cross-sensitivity
$u_{i} \quad 0.167$ Vol.-\%

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{c})
Total expanded uncertainty

$$
\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\mathrm{max}, \mathrm{j}}\right)^{2}}
$$

$$
U=u_{c}^{*} k=u_{c}^{*} 1.96
$$

u^{2}
0.003 (Vol.-\%) ${ }^{2}$
0.003 (Vol.-\%) ${ }^{2}$
0.028 (Vol.-\%) ${ }^{2}$
0.010 (Vol.-\%) ${ }^{2}$
0.002 (Vol.-\%) ${ }^{2}$
0.000 (Vol.-\%) ${ }^{2}$
0.028 (Vol.-\%) ${ }^{2}$
0.001 (Vol.-\%) ${ }^{2}$
0.041 (Vol.-\%) ${ }^{2}$

Relative total expanded uncertainty Requirement of 2010/75/EU

U in \% of the range 25 Vol.-\%
2.7

U in \% of the range 25 Vol.-\%
25.0 **

U in \% of the range $25 \mathrm{Vol} .-\%$
** The EU-directive 2010/75/EU on industrial emissions provides no requirements for this component.
A value of 25.0% was used for this.
Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity
Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{c}=\sqrt{\sum\left(\mathrm{u}_{\text {max, } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$2.70 \mathrm{mg} / \mathrm{m}^{3}$
$5.30 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

Siemens AG
Set CEM CERT 7MB 1957 SIPROCESS UV 600 TÜV 1 / TÜV 2
UV-RAS
936/21230405/B
TÜV Rheinland
2016-09-12
SO_{2}
0 - $75 \mathrm{mg} / \mathrm{m}^{3}$
$u_{i} \quad 1.589 \mathrm{mg} / \mathrm{m}^{3}$

U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{1 0 . 6}$
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$	$\mathbf{2 0 . 0}$
U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$	15.0

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle
Siemens AG
Set CEM CERT 7MB 1957 Ultramat 23
TÜV 1 / TÜV 2
NDIR

936/21242490/A
TÜV Rheinland
2019-02-27

CO
0 - $375 \mathrm{mg} / \mathrm{m}^{3}$
Certification range

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$5.07 \mathrm{mg} / \mathrm{m}^{3}$
$9.94 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$ 10.0

U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$
7.5

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{c}=\sqrt{\sum\left(u_{m a x, j}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$5.13 \mathrm{mg} / \mathrm{m}^{3}$
$10.05 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $150 \mathrm{mg} / \mathrm{m}^{3}$

[^1]
Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report
Siemens AG
Set CEM CERT 7MB 1957 Ultramat 23
TÜV 1 / TÜV 2
NDIR

Measured component

936/21230405/B
TÜV Rheinland
2016-09-12

Certification range
NO
Cetrication range
0 - $150 \mathrm{mg} / \mathrm{m}^{3}$
Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Uncertainty of cross-sensitivity
$u_{i} \quad-3.464 \mathrm{mg} / \mathrm{m}^{3}$
Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"
Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$4.80 \mathrm{mg} / \mathrm{m}^{3}$
$9.41 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $65.2 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $65.2 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $65.2 \mathrm{mg} / \mathrm{m}^{3}$

[^2]
Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty

Siemens AG
Set CEM CERT 7MB 1957 Ultramat 23
TÜV 1 / TÜV 2
NDIR
936/21230405/B
TÜV Rheinland
2016-09-12

NO
0 - $400 \mathrm{mg} / \mathrm{m}^{3}$
$u_{i} \quad-6.928 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max, } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$9.73 \mathrm{mg} / \mathrm{m}^{3}$
$19.07 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty

Siemens AG
Set CEM CERT 7MB 1957 Ultramat 23
TÜV 1 / TÜV 2
NDIR
936/21230405/B
TÜV Rheinland
2016-09-12

NO
0 - $400 \mathrm{mg} / \mathrm{m}^{3}$
$u_{i} \quad-6.928 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max } \mathrm{j}}\right)^{2}}$
$U=u_{c}{ }^{*} k=u_{c}{ }^{*} 1.96 \quad 19.57 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty

Siemens AG
Set CEM CERT 7MB 1957 SIPROCESS UV 600 TÜV 1 / TÜV 2
UV-RAS

936/21230405/B
TÜV Rheinland
2016-09-12

NO
0 - $50 \mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{i}} \quad 0.967 \mathrm{mg} / \mathrm{m}^{3}$

		u^{2}		
u_{D}	0.350	$\mathrm{mg} / \mathrm{m}^{3}$	0.123	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {lof }}$	-0.289	$\mathrm{mg} / \mathrm{m}^{3}$	0.084	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {d.z }}$	0.866	$\mathrm{mg} / \mathrm{m}^{3}$	0.750	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{u}_{\text {d.s }}$	-0.693	$\mathrm{mg} / \mathrm{m}^{3}$	0.480	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{t}	0.624	$\mathrm{mg} / \mathrm{m}^{3}$	0.389	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{v}	0.096	$\mathrm{mg} / \mathrm{m}^{3}$	0.009	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{i}	0.967	$\mathrm{mg} / \mathrm{m}^{3}$	0.935	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{D}	-0.136	$\mathrm{mg} / \mathrm{m}^{3}$	0.018	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{rm}	0.404	$\mathrm{mg} / \mathrm{m}^{3}$	0.163	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

Relative total expanded uncertainty
U in \% of the ELV $32.6 \mathrm{mg} / \mathrm{m}^{3}$
Requirement of 2010/75/EU
U in \% of the ELV $32.6 \mathrm{mg} / \mathrm{m}^{3}$
Requirement of EN 15267-3
$u_{c}=\sqrt{\sum\left(\mathrm{u}_{\text {max, } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$1.72 \mathrm{mg} / \mathrm{m}^{3}$
$3.37 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report
Siemens AG
Set CEM CERT 7MB 1957 Ultramat 23
TÜV $1 /$ TÜV 2
NDIR
936/21230405/B
TÜV Rheinland
2016-09-12
SO_{2}
$0-400 \mathrm{mg} / \mathrm{m}^{3}$

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Uncertainty of cross-sensitivity
$u_{i} \quad-6.928 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$12.71 \mathrm{mg} / \mathrm{m}^{3}$
$24.92 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $200 \mathrm{mg} / \mathrm{m}^{3}$

U in \% of the ELV $200 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report
Siemens AG

Measured component
Set CEM CERT 7MB 1957 Ultramat 23
TÜV 3 / TÜV 4
NDIR

Certification range
936/21230405/B
TÜV Rheinland
2016-09-12

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity
$u_{i} \quad-6.928 \mathrm{mg} / \mathrm{m}^{3}$
Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used:
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{c}=\sqrt{\sum\left(\mathrm{u}_{\text {max, } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$12.78 \mathrm{mg} / \mathrm{m}^{3}$
$25.04 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $200 \mathrm{mg} / \mathrm{m}^{3}$

U in \% of the ELV $200 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component
Certification range

Siemens AG
Set CEM CERT 7MB 1957
TÜV 1 / TÜV 2
NDIR

936/21230405/B
TÜV Rheinland
2016-09-12

CO
0 - $200 \mathrm{mg} / \mathrm{m}^{3}$

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Uncertainty of cross-sensitivity
$\mathrm{u}_{\mathrm{i}} \quad 1.998 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

			u^{2}	
u_{D}	0.588	$\mathrm{mg} / \mathrm{m}^{3}$	0.346	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$\mathrm{Ul}_{\text {lof }}$	-0.924	$\mathrm{mg} / \mathrm{m}^{3}$	0.854	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$u_{\text {d. }}$	1.848	$\mathrm{mg} / \mathrm{m}^{3}$	3.415	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$u_{\text {d.s }}$	-1.732	$\mathrm{mg} / \mathrm{m}^{3}$	3.000	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{t}	0.493	$\mathrm{mg} / \mathrm{m}^{3}$	0.243	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{v}	0.484	$\mathrm{mg} / \mathrm{m}^{3}$	0.234	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{i}	1.998	$\mathrm{mg} / \mathrm{m}^{3}$	3.992	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
u_{p}	-0.107	$\mathrm{mg} / \mathrm{m}^{3}$	0.011	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$u_{\text {rm }}$	1.617	$\mathrm{mg} / \mathrm{m}^{3}$	2.613	$\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max } \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
$3.84 \mathrm{mg} / \mathrm{m}^{3}$
$7.52 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty Requirement of 2010/75/EU
Requirement of EN 15267-3

U in \% of the ELV $100 \mathrm{mg} / \mathrm{m}^{3}$
U in \% of the ELV $100 \mathrm{mg} / \mathrm{m}^{3}$ 10.0

U in \% of the ELV $100 \mathrm{mg} / \mathrm{m}^{3}$

Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

Certificate

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty

Siemens AG
Set CEM CERT 7MB 1957 SIPROCESS UV 600
TÜV 1 / TÜV 2
UV-RAS

936/21230405/B
TÜV Rheinland
2016-09-12
NO_{2}
0 - $50 \mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{u}_{\mathrm{i}} \quad 1.065 \mathrm{mg} / \mathrm{m}^{3}$

Relative total expanded uncertainty
Requirement of 2010/75/EU
Requirement of EN 15267-3
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
\mathbf{U} in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$
\mathbf{U} in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$
20.0

U in \% of the ELV $50 \mathrm{mg} / \mathrm{m}^{3}$

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT Ultramat 23
System 1 / System 3 / System 2 / System 4 paramagnetic

936/21230405/C
TÜV Rheinland
2016-12-22
O_{2}

	0.00	Vol.-\%
	0.00	Vol.-\%
0.00	Vol.-\%	
	0.00	Vol.-\%
	0.00	Vol.-\%
ui $_{i}$	0.000	Vol.-\%

0 - 25 Vol.-\%

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Calculation of the combined standard uncertainty

Tested parameter

Repeatability standard deviation at set point *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"
Combined standard uncertainty (u_{C})
Total expanded uncertainty
$u_{c}=\sqrt{\sum\left(u_{\max , \mathrm{j}}\right)^{2}}$
$U=u_{c}^{*} k=u_{c}^{*} 1.96$
0.27 Vol.-\%
0.53 Vol.-\%

Relative total expanded uncertainty
 Requirement of 2010/75/EU

Requirement of EN 15267-3

U in \% of the range 25 Vol.-\% U in \% of the range $25 \mathrm{Vol} .-\%$ U in \% of the range $25 \mathrm{Vol} .-\%$

[^3]
Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Siemens AG
Set CEM CERT 7MB1957 (Oxymat 7)
N1K1200172 / N1JN200171
paramagnetic

936/21242490/A
TÜV Rheinland
2019-02-27

O_{2}

0 - 25 Vol.-\%

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70% of certification range

	0.00	Vol.-\%
	0.00	Vol.-\%
u i $_{\text {i }}$	0.000	Vol.-\%

* The larger value is used
"Repeatability standard deviation at set point" or
Standard deviation from paired measurements under field conditions

Combined standard uncertainty (u_{C})
Total expanded uncertainty
u^{2}
0.007 (Vol.-\%) ${ }^{2}$
0.003 (Vol.-\%) ${ }^{2}$
0.001 (Vol.-\%) ${ }^{2}$
0.005 (Vol.-\%) ${ }^{2}$
0.015 (Vol.-\%) ${ }^{2}$
0.000 (Vol.-\%) ${ }^{2}$
0.000 (Vol.-\%) ${ }^{2}$
0.000 (Vol.-\%) ${ }^{2}$
0.041 (Vol.-\%) ${ }^{2}$

u_{D}	0.086	Vol.-\%	0.007	(Vol.-\%) ${ }^{2}$
$\mathrm{u}_{\text {lof }}$	0.058	Vol.-\%	0.003	(Vol.-\%) ${ }^{2}$
$\mathrm{u}_{\mathrm{d}, \mathrm{z}}$	-0.029	Vol.-\%	0.001	(Vol.-\%) ${ }^{2}$
$\mathrm{u}_{\mathrm{d}, \mathrm{s}}$	-0.069	Vol.-\%	0.005	(Vol.-\%) ${ }^{2}$
u_{t}	0.122	Vol.-\%	0.015	(Vol.-\%) ${ }^{2}$
u_{v}	0.021	Vol.-\%	0.000	(Vol.-\%) ${ }^{2}$
u_{i}	0.000	Vol.-\%	0.000	(Vol.-\%) ${ }^{2}$
u_{p}	0.021	Vol.-\%	0.000	(Vol.-\%) ${ }^{2}$
$u_{\text {rm }}$	0.202	Vol.-\%	0.041	(Vol.-\%) ${ }^{2}$

$u_{r m} \quad 0.202$ Vol.-\%
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
0.27 Vol.-\%

Requirement of 2010/75/EU
U in \% of the range 25 Vol.-\%
\mathbf{U} in \% of the range 25 Vol.-\% 10.0 **

Requirement of EN 15267-3
** The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0% was used instead.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Siemens AG
Set CEM CERT 7MB1957 (Ultramat 7)
N1K1100191 / N1JN100185
NDIR

936/21242490/A
TÜV Rheinland
2019-02-27
CO_{2}
0 - 30 Vol.-\%

Evaluation of the cross-sensitivity (CS)
(system with largest CS)
Sum of positive CS at zero point

	0.00	Vol.-\%
	0.00	Vol.-\%
	0.40	Vol.-\%
	-0.20	Vol.-\%
	0.40	Vol.-\%
u $_{\text {i }}$	0.232	Vol.-\%

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum_{\mathrm{w}}\left(\mathrm{u}_{\max , \mathrm{j}}\right)^{2}}$
0.49 Vol.-\%

Total expanded uncertainty

		u^{2}		
u_{D}	0.047	Vol.-\%	0.002	$(\text { Vol. }-\%)^{2}$
$u_{\text {lof }}$	0.289	Vol.-\%	0.084	$(\text { Vol. }-\%)^{2}$
$u_{d, z}$	0.017	Vol.-\%	0.000	$(\text { Vol. }-\%)^{2}$
$u_{d, s}$	0.087	Vol.-\%	0.008	$(\text { Vol. }-\%)^{2}$
u_{t}	0.173	Vol.-\%	0.030	$(\text { Vol. }-\%)^{2}$
u_{v}	0.012	Vol.-\%	0.000	$(\text { Vol. }-\%)^{2}$
u_{i}	0.232	Vol.-\%	0.054	$(\text { Vol. }-\%)^{2}$
u_{p}	0.004	Vol.-\%	0.000	$(\text { Vol. }-\%)^{2}$
$u_{r m}$	0.242	Vol.-\%	0.059	$($ Vol.-\%)

Relative total expanded uncertainty
U in \% of the range 30 Vol. $\%$
Requirement of 2010/75/EU
\mathbf{U} in \% of the range $30 \mathrm{Vol} .-\%$ 10.0 **

U in \% of the range $30 \mathrm{Vol} .-\%$
** The EU-directive 2010/75/EC on industrial emissions does not define requirements for this component. A value of 10.0% was used instead.

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report

Measured component

Certification range

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point
Sum of negative CS at zero point
Sum of postive CS at span point
Sum of negative CS at span point
Maximum sum of cross-sensitivities
Uncertainty of cross-sensitivity

Siemens AG
Set CEM CERT 7MB1957 (Ultramat 23)
JN-820 / JN-821
UV Absorption

936/21242490/A
TÜV Rheinland
2019-02-27
NO_{2}
0 - $50 \mathrm{mg} / \mathrm{m}^{3}$

	1.61	$\mathrm{mg} / \mathrm{m}^{3}$
	0.00	$\mathrm{mg} / \mathrm{m}^{3}$
	0.30	$\mathrm{mg} / \mathrm{m}^{3}$
	-0.70	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	0.61	$\mathrm{mg} / \mathrm{m}^{3}$
	0.930	$\mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty
Tested parameter
Standard deviation from paired measurements under field conditions * Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$
u^{2}
$0.009\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.120\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.030\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.564\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.224\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.001\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.865\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.001\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$
$0.163\left(\mathrm{mg} / \mathrm{m}^{3}\right)^{2}$

Relative total expanded uncertainty
U in \% of the ELV $33.3 \mathrm{mg} / \mathrm{m}^{3}$
Requirement of 2010/75/EU

Certificate:

TÜVRheinland
0000053810_11 / 05 November 2019

Calculation of overall uncertainty according to EN 14181 and EN 15267-3

Measuring system

Manufacturer
AMS designation
Serial number of units under test
Measuring principle

Test report

Test laboratory
Date of report
Siemens AG
Set CEM CERT 7MB1957 Ultramat 23
JN-820 / JN-821
UV Absorption

936/21242490/A
TÜV Rheinland
2019-02-27

Measured component

Certification range
SO_{2}
0 - $70 \mathrm{mg} / \mathrm{m}^{3}$

Evaluation of the cross-sensitivity (CS)

(system with largest CS)
Sum of positive CS at zero point

	2.29
	$\mathrm{mg} / \mathrm{m}^{3}$
	0.00
	$\mathrm{mg} / \mathrm{m}^{3}$
	0.60
	$\mathrm{mg} / \mathrm{m}^{3}$
u_{i}	-1.90
	$\mathrm{mg} / \mathrm{m}^{3}$
2.29	$\mathrm{mg} / \mathrm{m}^{3}$
1.322	$\mathrm{mg} / \mathrm{m}^{3}$

Calculation of the combined standard uncertainty

Tested parameter

Standard deviation from paired measurements under field conditions *
Lack of fit
Zero drift from field test
Span drift from field test
Influence of ambient temperature at span
Influence of supply voltage
Cross-sensitivity (interference)
Influence of sample gas flow
Uncertainty of reference material at 70\% of certification range

* The larger value is used :
"Repeatability standard deviation at set point" or
"Standard deviation from paired measurements under field conditions"

Combined standard uncertainty (u_{C})
Total expanded uncertainty
$\mathrm{u}_{\mathrm{c}}=\sqrt{\sum\left(\mathrm{u}_{\text {max }, \mathrm{j}}\right)^{2}}$
$1.99 \mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{U}=\mathrm{u}_{\mathrm{c}}{ }^{*} \mathrm{k}=\mathrm{u}_{\mathrm{c}}{ }^{*} 1.96$

U in \% of the ELV $46,6 \mathrm{mg} / \mathrm{m}^{3}$
\mathbf{U} in \% of the ELV $46,6 \mathrm{mg} / \mathrm{m}^{\mathbf{3}}$
20.0

U in \% of the ELV $46,6 \mathrm{mg} / \mathrm{m}^{3}$
15.0

[^0]: ** EU Directive 2010/75/EU on industrial emissions does not define requirements for this component

[^1]: Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

[^2]: Test results from the test performed by TÜV Rheinland Energy GmbH and TÜV Süd Industrie Service GmbH account for the data of the uncertainty calculation.

[^3]: ** EU Directive 2010/75/EU on industrial emissions does not define requirements for this component.
 A value of 10.0% was used instead.

